The core objective of the Food Biosciences Department is to engage in advanced research and technology development in support of the Irish Agri-Food industry sector. Activities fall into three research areas: Food for Health; Cheese Microbiology and Biochemistry and Milk and Product Quality.

News

Food Biosciences

Recent Submissions

  • Insights into the Mode of Action of the Sactibiotic Thuricin CD

    Mathur, Harsh; Fallico, Vicenzo; O'Connor, Paula M.; Rea, Mary C.; Cotter, Paul D.; Hill, Colin; Ross, R. Paul (Frontiers, 2017-04-20)
    Thuricin CD is a two-component bacteriocin, consisting of the peptides Trnα and Trnβ, and belongs to the newly designated sactibiotic subclass of bacteriocins. While it is clear from studies conducted thus far that it is a narrow-spectrum bacteriocin, requiring the synergistic activity of the two peptides, the precise mechanism of action of thuricin CD has not been elucidated. This study used a combination of flow cytometry and traditional culture-dependent assays to ascertain the effects of the thuricin CD peptides on the morphology, physiology and viability of sensitive Bacillus firmus DPC6349 cells. We show that both Trnα and Trnβ are membrane-acting and cause a collapse of the membrane potential, which could not be reversed even under membrane-repolarizing conditions. Furthermore, the depolarizing action of thuricin CD is accompanied by reductions in cell size and granularity, producing a pattern of physiological alterations in DPC6349 cells similar to those triggered by the pore-forming single-component bacteriocin Nisin A, and two-component lacticin 3147. Taken together, these results lead us to postulate that the lytic activity of thuricin CD involves the insertion of thuricin CD peptides into the membrane of target cells leading to permeabilization due to pore formation and consequent flux of ions across the membrane, resulting in membrane depolarization and eventual cell death.
  • Genome Sequence of Staphylococcus saprophyticus DPC5671, a Strain Isolated from Cheddar Cheese

    Bertuzzi, Andrea; Guinane, Caitriona M.; Crispie, Fiona; Kilcawley, Kieran N; McSweeney, Paul L.H.; Rea, Mary C. (American Society for Microbiology, 2017-04-20)
    The draft genome sequence of Staphylococcus saprophyticus DPC5671, isolated from cheddar cheese, was determined. S. saprophyticus is a common Gram-positive bacterium detected on the surface of smear-ripened cheese and other fermented foods.
  • Algal Proteins: Extraction, Application, and Challenges Concerning Production

    Bleakley, Stephen; Hayes, Maria (MDPI, 2017-04-26)
    Population growth combined with increasingly limited resources of arable land and fresh water has resulted in a need for alternative protein sources. Macroalgae (seaweed) and microalgae are examples of under-exploited “crops”. Algae do not compete with traditional food crops for space and resources. This review details the characteristics of commonly consumed algae, as well as their potential for use as a protein source based on their protein quality, amino acid composition, and digestibility. Protein extraction methods applied to algae to date, including enzymatic hydrolysis, physical processes, and chemical extraction and novel methods such as ultrasound-assisted extraction, pulsed electric field, and microwave-assisted extraction are discussed. Moreover, existing protein enrichment methods used in the dairy industry and the potential of these methods to generate high value ingredients from algae, such as bioactive peptides and functional ingredients are discussed. Applications of algae in human nutrition, animal feed, and aquaculture are examined
  • Bacteriocin-Antimicrobial Synergy: A Medical and Food Perspective

    Mathur, Harsh; Field, Des; Rea, Mary C.; Cotter, Paul D.; Hill, Colin; Ross, R.Paul (Frontiers, 2017-06-29)
    The continuing emergence of multi-drug resistant pathogens has sparked an interest in seeking alternative therapeutic options. Antimicrobial combinatorial therapy is one such avenue. A number of studies have been conducted, involving combinations of bacteriocins with other antimicrobials, to circumvent the development of antimicrobial resistance and/or increase antimicrobial potency. Such bacteriocin-antimicrobial combinations could have tremendous value, in terms of reducing the likelihood of resistance development due to the involvement of two distinct mechanisms of antimicrobial action. Furthermore, antimicrobial synergistic interactions may also have potential financial implications in terms of decreasing the costs of treatment by reducing the concentration of an expensive antimicrobial and utilizing it in combination with an inexpensive one. In addition, combinatorial therapies with bacteriocins can broaden antimicrobial spectra and/or result in a reduction in the concentration of an antibiotic required for effective treatments to the extent that potentially toxic or adverse side effects can be reduced or eliminated. Here, we review studies in which bacteriocins were found to be effective in combination with other antimicrobials, with a view to targeting clinical and/or food-borne pathogens. Furthermore, we discuss some of the bottlenecks which are currently hindering the development of bacteriocins as viable therapeutic options, as well as addressing the need to exercise caution when attempting to predict clinical outcomes of bacteriocin-antimicrobial combinations.
  • Whole-Genome Shotgun Sequence of Salmonella bongori, First Isolated in Northwestern Italy

    Romano, Angelo; Bellio, Alberto; Macori, Guerrino; Cotter, Paul D; Manila Bianchi, Daniela; Gallina, Silvia; Decastelli, Lucia (American Society for Microbiology, 2017-07-06)
    This study describes the whole-genome shotgun sequence of Salmonella bongori 48:z35:–, originally isolated from a 1-year-old symptomatic patient in northwest Italy, a typically nonendemic area. The draft genome sequence contained 4.56 Mbp and the G+C content was 51.27%.
  • Draft Genome Sequences of Three Lactobacillus paracasei Strains, Members of the Nonstarter Microbiota of Mature Cheddar Cheese

    Stefanovic, Ewelina; Fitzgerald, Gerald; McAuliffe, Olivia (American Society for Microbiology, 2017-07-20)
    Lactobacillus paracasei strains are common members of the nonstarter microbiota present in various types of cheeses. The draft genome sequences of three strains isolated from mature cheddar cheeses are reported here.
  • Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium

    Henchion, Maeve; Hayes, Maria; Mullen, Anne Maria; Fenelon, Mark; Tiwari, Brijesh (MDPI, 2017-07-20)
    A growing global population, combined with factors such as changing socio-demographics, will place increased pressure on the world’s resources to provide not only more but also different types of food. Increased demand for animal-based protein in particular is expected to have a negative environmental impact, generating greenhouse gas emissions, requiring more water and more land. Addressing this “perfect storm” will necessitate more sustainable production of existing sources of protein as well as alternative sources for direct human consumption. This paper outlines some potential demand scenarios and provides an overview of selected existing and novel protein sources in terms of their potential to sustainably deliver protein for the future, considering drivers and challenges relating to nutritional, environmental, and technological and market/consumer domains. It concludes that different factors influence the potential of existing and novel sources. Existing protein sources are primarily hindered by their negative environmental impacts with some concerns around health. However, they offer social and economic benefits, and have a high level of consumer acceptance. Furthermore, recent research emphasizes the role of livestock as part of the solution to greenhouse gas emissions, and indicates that animal-based protein has an important role as part of a sustainable diet and as a contributor to food security. Novel proteins require the development of new value chains, and attention to issues such as production costs, food safety, scalability and consumer acceptance. Furthermore, positive environmental impacts cannot be assumed with novel protein sources and care must be taken to ensure that comparisons between novel and existing protein sources are valid. Greater alignment of political forces, and the involvement of wider stakeholders in a governance role, as well as development/commercialization role, is required to address both sources of protein and ensure food security.
  • The Fungal Frontier: A Comparative Analysis of Methods Used in the Study of the Human Gut Mycobiome

    Huseyin, Chloe E.; Cabrera Rubio, Raul; O'Sullivan, Orla; Cotter, Paul D; Scanlan, Pauline D. (Frontiers, 2017-07-31)
    The human gut is host to a diverse range of fungal species, collectively referred to as the gut “mycobiome”. The gut mycobiome is emerging as an area of considerable research interest due to the potential roles of these fungi in human health and disease. However, there is no consensus as to what the best or most suitable methodologies available are with respect to characterizing the human gut mycobiome. The aim of this study is to provide a comparative analysis of several previously published mycobiome-specific culture-dependent and -independent methodologies, including choice of culture media, incubation conditions (aerobic versus anaerobic), DNA extraction method, primer set and freezing of fecal samples to assess their relative merits and suitability for gut mycobiome analysis. There was no significant effect of media type or aeration on culture-dependent results. However, freezing was found to have a significant effect on fungal viability, with significantly lower fungal numbers recovered from frozen samples. DNA extraction method had a significant effect on DNA yield and quality. However, freezing and extraction method did not have any impact on either α or β diversity. There was also considerable variation in the ability of different fungal-specific primer sets to generate PCR products for subsequent sequence analysis. Through this investigation two DNA extraction methods and one primer set was identified which facilitated the analysis of the mycobiome for all samples in this study. Ultimately, a diverse range of fungal species were recovered using both approaches, with Candida and Saccharomyces identified as the most common fungal species recovered using culture-dependent and culture-independent methods, respectively. As has been apparent from ecological surveys of the bacterial fraction of the gut microbiota, the use of different methodologies can also impact on our understanding of gut mycobiome composition and therefore requires careful consideration. Future research into the gut mycobiome needs to adopt a common strategy to minimize potentially confounding effects of methodological choice and to facilitate comparative analysis of datasets.
  • Synergistic Nisin-Polymyxin Combinations for the Control of Pseudomonas Biofilm Formation

    Field, Des; Seisling, Nynke; Cotter, Paul D.; Ross, R. Paul; Hill, Colin (Frontiers, 2016-10-26)
    The emergence and dissemination of multi-drug resistant pathogens is a global concern. Moreover, even greater levels of resistance are conferred on bacteria when in the form of biofilms (i.e., complex, sessile communities of bacteria embedded in an organic polymer matrix). For decades, antimicrobial peptides have been hailed as a potential solution to the paucity of novel antibiotics, either as natural inhibitors that can be used alone or in formulations with synergistically acting antibiotics. Here, we evaluate the potential of the antimicrobial peptide nisin to increase the efficacy of the antibiotics polymyxin and colistin, with a particular focus on their application to prevent biofilm formation of Pseudomonas aeruginosa. The results reveal that the concentrations of polymyxins that are required to effectively inhibit biofilm formation can be dramatically reduced when combined with nisin, thereby enhancing efficacy, and ultimately, restoring sensitivity. Such combination therapy may yield added benefits by virtue of reducing polymyxin toxicity through the administration of significantly lower levels of polymyxin antibiotics.
  • Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium

    Henchion, Maeve; Hayes, Maria; Mullen, Anne Maria; Fenelon, Mark A.; Tiwari, Brijesh (MDPI, 2017-07-20)
    A growing global population, combined with factors such as changing socio-demographics, will place increased pressure on the world’s resources to provide not only more but also different types of food. Increased demand for animal-based protein in particular is expected to have a negative environmental impact, generating greenhouse gas emissions, requiring more water and more land. Addressing this “perfect storm” will necessitate more sustainable production of existing sources of protein as well as alternative sources for direct human consumption. This paper outlines some potential demand scenarios and provides an overview of selected existing and novel protein sources in terms of their potential to sustainably deliver protein for the future, considering drivers and challenges relating to nutritional, environmental, and technological and market/consumer domains. It concludes that different factors influence the potential of existing and novel sources. Existing protein sources are primarily hindered by their negative environmental impacts with some concerns around health. However, they offer social and economic benefits, and have a high level of consumer acceptance. Furthermore, recent research emphasizes the role of livestock as part of the solution to greenhouse gas emissions, and indicates that animal-based protein has an important role as part of a sustainable diet and as a contributor to food security. Novel proteins require the development of new value chains, and attention to issues such as production costs, food safety, scalability and consumer acceptance. Furthermore, positive environmental impacts cannot be assumed with novel protein sources and care must be taken to ensure that comparisons between novel and existing protein sources are valid. Greater alignment of political forces, and the involvement of wider stakeholders in a governance role, as well as development/commercialization role, is required to address both sources of protein and ensure food security
  • The altered gut microbiota in adults with cystic fibrosis

    Burke, D.G.; Fouhy, Fiona; Harrison, M. J; Rea, Mary C; Cotter, Paul D; O’Sullivan, Orla; Stanton, Catherine; Hill, C.; Shanahan, F.; Plant, B. J; Ross, R. Paul (Biomed Central, 2017-03-09)
    Background Cystic Fibrosis (CF) is an autosomal recessive disease that affects the function of a number of organs, principally the lungs, but also the gastrointestinal tract. The manifestations of cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction in the gastrointestinal tract, as well as frequent antibiotic exposure, undoubtedly disrupts the gut microbiota. To analyse the effects of CF and its management on the microbiome, we compared the gut microbiota of 43 individuals with CF during a period of stability, to that of 69 non-CF controls using 454-pyrosequencing of the 16S rRNA gene. The impact of clinical parameters, including antibiotic therapy, on the results was also assessed. Results The CF-associated microbiome had reduced microbial diversity, an increase in Firmicutes and a reduction in Bacteroidetes compared to the non-CF controls. While the greatest number of differences in taxonomic abundances of the intestinal microbiota was observed between individuals with CF and the healthy controls, gut microbiota differences were also reported between people with CF when grouped by clinical parameters including % predicted FEV1 (measure of lung dysfunction) and the number of intravenous (IV) antibiotic courses in the previous 12 months. Notably, CF individuals presenting with severe lung dysfunction (% predicted FEV1 ≤ 40%) had significantly (p < 0.05) reduced gut microbiota diversity relative to those presenting with mild or moderate dysfunction. A significant negative correlation (−0.383, Simpson’s Diversity Index) was also observed between the number of IV antibiotic courses and gut microbiota diversity. Conclusions This is one of the largest single-centre studies on gut microbiota in stable adults with CF and demonstrates the significantly altered gut microbiota, including reduced microbial diversity seen in CF patients compared to healthy controls. The data show the impact that CF and it's management have on gut microbiota, presenting the opportunity to develop CF specific probiotics to minimise microbiota alterations.
  • Whey protein effects on energy balance link the intestinal mechanisms of energy absorption with adiposity and hypothalamic neuropeptide gene expression

    Nilaweera, Kanishka N; Cabrera-Rubio, Raul; Speakman, John R.; O'Connor, Paula M.; McAuliffe, Ann Marie; Guinane, Catriona M.; Lawton, Elaine M.; Crispie, Fiona; Aguilera, Monica; Stanley, Maurice; Boscaini, Serena; Joyce, Susan; Melgar, Sylvia; Cryan, John F.; Cotter, Paul D. (American Physiological Society, 2017-03-21)
    We tested the hypothesis that dietary whey protein isolate (WPI) affects the intestinal mechanisms related to energy absorption and that the resulting energy deficit is compensated by changes in energy balance to support growth. C57BL/6 mice were provided a diet enriched with WPI with varied sucrose content, and the impact on energy balance-related parameters was investigated. As part of a high-sucrose diet, WPI reduced the hypothalamic expression of pro-opiomelanocortin gene expression and increased energy intake. The energy expenditure was unaffected, but epididymal weight was reduced, indicating an energy loss. Notably, there was a reduction in the ileum gene expression for amino acid transporter SLC6a19, glucose transporter 2, and fatty acid transporter 4. The composition of the gut microbiota also changed, where Firmicutes were reduced. The above changes indicated reduced energy absorption through the intestine. We propose that this mobilized energy in the adipose tissue and caused hypothalamic changes that increased energy intake, acting to counteract the energy deficit arising in the intestine. Lowering the sucrose content in the WPI diet increased energy expenditure. This further reduced epididymal weight and plasma leptin, whereupon hypothalamic ghrelin gene expression and the intestinal weight were both increased. These data suggest that when the intestine-adipose-hypothalamic pathway is subjected to an additional energy loss (now in the adipose tissue), compensatory changes attempt to assimilate more energy. Notably, WPI and sucrose content interact to enable the component mechanisms of this pathway.
  • Aroma compound diacetyl suppresses glucagon-like peptide-1 production and secretion in STC-1 cells

    McCarthy, Triona; Bruen, Christine; O'Halloren, Fiona; Schellekens, Harriet; Kilcawley, Kieran N; Cryan, John F.; Giblin, Linda (Elsevier, 2017-01-21)
    Diacetyl is a volatile flavour compound that has a characteristic buttery aroma and is widely used in the flavour industry. The aroma of a food plays an important role in food palatability and thus intake. This study investigates the effect of diacetyl on the satiety hormone, glucagon-like peptide (GLP-1), using the enteroendocrine cell line, STC-1. Diacetyl decreased proglucagon mRNA and total GLP-1 from glucose stimulated STC-1 cells. This dampening effect on GLP-1 appears to be mediated by increasing intracellular cAMP levels, increasing synthesis of the G protein coupled receptor, GPR120, and its recruitment to the cell surface. Voltage gated Ca2+ channels, K+ATP channels and the α-gustducin taste pathway do not appear to be involved. These findings demonstrate that components contributing to food palatability suppress GLP-1. This ability of diacetyl to reduce satiety signals may contribute to overconsumption of some palatable foods.
  • Detection of presumptive Bacillus cereus in the Irish dairy farm environment

    O'Connell, A.; Lawton, E.M.; Leong, Dara; Cotter, Paul D; Gleeson, David; Guinane, Catriona M. (Teagasc (Agriculture and Food Development Authority), Ireland, 2016-01-30)
    The objective of the study was to isolate potential Bacillus cereus sensu lato (B. cereus s.l.) from a range of farm environments. Samples of tap water, milking equipment rinse water, milk sediment filter, grass, soil and bulk tank milk were collected from 63 farms. In addition, milk liners were swabbed at the start and the end of milking, and swabs were taken from cows’ teats prior to milking. The samples were plated on mannitol egg yolk polymyxin agar (MYP) and presumptive B. cereus s.l. colonies were isolated and stored in nutrient broth with 20% glycerol and frozen at -80 °C. These isolates were then plated on chromogenic medium (BACARA) and colonies identified as presumptive B. cereus s.l. on this medium were subjected to 16S ribosomal RNA (rRNA) sequencing. Of the 507 isolates presumed to be B. cereus s.l. on the basis of growth on MYP, only 177 showed growth typical of B. cereus s.l. on BACARA agar. The use of 16S rRNA sequencing to identify isolates that grew on BACARA confirmed that the majority of isolates belonged to B. cereus s.l. A total of 81 of the 98 isolates sequenced were tentatively identified as presumptive B. cereus s.l. Pulsed-field gel electrophoresis was carried out on milk and soil isolates from seven farms that were identified as having presumptive B. cereus s.l. No pulsotype was shared by isolates from soil and milk on the same farm. Presumptive B. cereus s.l. was widely distributed within the dairy farm environment.
  • Erratum to: Evolution of gut microbiota composition from birth to 24 weeks in the INFANTMET Cohort

    Hill, Cian J; Lynch, Denise B; Murphy, Kiera; Ulaszewska, Marynka; Jeffery, Ian B; O’Shea, Carol A; Watkins, Claire; Dempsey, Eugene; Mattivi, Fulvio; Tuohy, Kieran; Ross, R. P; Ryan, C. A; O’Toole, Paul W; Stanton, Catherine (Biomed Central, 2017-02-14)
    Following publication of this article [1], it has come to our attention that the name of the author Kieran Tuohy’s name was captured incorrectly as “Touhy” and instead should be Kieran Tuohy. The original article has also been corrected.The online version of the original article can be found under doi:10.1186/s40168-016-0213-y.
  • Evolution of gut microbiota composition from birth to 24 weeks in the INFANTMET Cohort

    Hill, Cian J; Lynch, Denise B; Murphy, Kiera; Ulaszewska, Marynka; Jeffery, Ian B; O’Shea, Carol A; Watkins, Claire; Dempsey, Eugene; Mattivi, Fulvio; Tuohy, Kieran; Ross, R. Paul; Ryan, C. A; O’ Toole, Paul W; Stanton, Catherine (Biomed Central, 2017-01-17)
    Background The gut is the most extensively studied niche of the human microbiome. The aim of this study was to characterise the initial gut microbiota development of a cohort of breastfed infants (n = 192) from 1 to 24 weeks of age. Methods V4-V5 region 16S rRNA amplicon Illumina sequencing and, in parallel, bacteriological culture. The metabolomic profile of infant urine at 4 weeks of age was also examined by LC-MS. Results Full-term (FT), spontaneous vaginally delivered (SVD) infants’ microbiota remained stable at both phylum and genus levels during the 24-week period examined. FT Caesarean section (CS) infants displayed an increased faecal abundance of Firmicutes (p < 0.01) and lower abundance of Actinobacteria (p < 0.001) after the first week of life compared to FT-SVD infants. FT-CS infants gradually progressed to harbouring a microbiota closely resembling FT-SVD (which remained stable) by week 8 of life, which was maintained at week 24. The gut microbiota of preterm (PT) infants displayed a significantly greater abundance of Proteobacteria compared to FT infants (p < 0.001) at week 1. Metabolomic analysis of urine at week 4 indicated PT-CS infants have a functionally different metabolite profile than FT (both CS and SVD) infants. Co-inertia analysis showed co-variation between the urine metabolome and the faecal microbiota of the infants. Tryptophan and tyrosine metabolic pathways, as well as fatty acid and bile acid metabolism, were found to be affected by delivery mode and gestational age. Conclusions These findings confirm that mode of delivery and gestational age both have significant effects on early neonatal microbiota composition. There is also a significant difference between the metabolite profile of FT and PT infants. Prolonged breastfeeding was shown to have a significant effect on the microbiota composition of FT-CS infants at 24 weeks of age, but interestingly not on that of FT-SVD infants. Twins had more similar microbiota to one another than between two random infants, reflecting the influence of similarities in both host genetics and the environment on the microbiota.
  • Comparative and functional genomics of the Lactococcus lactis taxon; insights into evolution and niche adaptation

    Kelleher, Philip; Bottacini, Francesca; Mahony, Jennifer; Kilcawley, Kieran N; van Sinderen, Douwe (Biomed Central, 2017-03-29)
    Background Lactococcus lactis is among the most widely studied lactic acid bacterial species due to its long history of safe use and economic importance to the dairy industry, where it is exploited as a starter culture in cheese production. Results In the current study, we report on the complete sequencing of 16 L. lactis subsp. lactis and L. lactis subsp. cremoris genomes. The chromosomal features of these 16 L. lactis strains in conjunction with 14 completely sequenced, publicly available lactococcal chromosomes were assessed with particular emphasis on discerning the L. lactis subspecies division, evolution and niche adaptation. The deduced pan-genome of L. lactis was found to be closed, indicating that the representative data sets employed for this analysis are sufficient to fully describe the genetic diversity of the taxon. Conclusions Niche adaptation appears to play a significant role in governing the genetic content of each L. lactis subspecies, while (differential) genome decay and redundancy in the dairy niche is also highlighted.
  • Microbiome and metabolome modifying effects of several cardiovascular disease interventions in apo-E−/− mice

    Ryan, Paul M; London, Lis E E; Bjorndahl, Trent C; Mandal, Rupasri; Murphy, Kiera; Fitzgerald, Gerald F; Shanahan, Fergus; Ross, R. Paul; Wishart, David S; Caplice, Noel M; Stanton, Catherine (Biomed Central, 2017-03-13)
    Background There is strong evidence indicating that gut microbiota have the potential to modify, or be modified by the drugs and nutritional interventions that we rely upon. This study aims to characterize the compositional and functional effects of several nutritional, neutraceutical, and pharmaceutical cardiovascular disease interventions on the gut microbiome, through metagenomic and metabolomic approaches. Apolipoprotein-E-deficient mice were fed for 24 weeks either high-fat/cholesterol diet alone (control, HFC) or high-fat/cholesterol in conjunction with one of three dietary interventions, as follows: plant sterol ester (PSE), oat β-glucan (OBG) and bile salt hydrolase-active Lactobacillus reuteri APC 2587 (BSH), or the drug atorvastatin (STAT). The gut microbiome composition was then investigated, in addition to the host fecal and serum metabolome. Results We observed major shifts in the composition of the gut microbiome of PSE mice, while OBG and BSH mice displayed more modest fluctuations, and STAT showed relatively few alterations. Interestingly, these compositional effects imparted by PSE were coupled with an increase in acetate and reduction in isovalerate (p < 0.05), while OBG promoted n-butyrate synthesis (p < 0.01). In addition, PSE significantly dampened the microbial production of the proatherogenic precursor compound, trimethylamine (p < 0.05), attenuated cholesterol accumulation, and nearly abolished atherogenesis in the model (p < 0.05). However, PSE supplementation produced the heaviest mice with the greatest degree of adiposity (p < 0.05). Finally, PSE, OBG, and STAT all appeared to have considerable impact on the host serum metabolome, including alterations in several acylcarnitines previously associated with a state of metabolic dysfunction (p < 0.05). Conclusions We observed functional alterations in microbial and host-derived metabolites, which may have important implications for systemic metabolic health, suggesting that cardiovascular disease interventions may have a significant impact on the microbiome composition and functionality. This study indicates that the gut microbiome-modifying effects of novel therapeutics should be considered, in addition to the direct host effects.
  • The altered gut microbiota in adults with cystic fibrosis

    Burke, D.G.; Fouhy, Fiona; Harrison, M. J; Rea, Mary C; Cotter, Paul D; O’Sullivan, O.; Stanton, Catherine; Hill, C.; Shanahan, F.; Plant, B. J; Ross, R. Paul (Biomed Central, 2017-03-09)
    Background Cystic Fibrosis (CF) is an autosomal recessive disease that affects the function of a number of organs, principally the lungs, but also the gastrointestinal tract. The manifestations of cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction in the gastrointestinal tract, as well as frequent antibiotic exposure, undoubtedly disrupts the gut microbiota. To analyse the effects of CF and its management on the microbiome, we compared the gut microbiota of 43 individuals with CF during a period of stability, to that of 69 non-CF controls using 454-pyrosequencing of the 16S rRNA gene. The impact of clinical parameters, including antibiotic therapy, on the results was also assessed. Results The CF-associated microbiome had reduced microbial diversity, an increase in Firmicutes and a reduction in Bacteroidetes compared to the non-CF controls. While the greatest number of differences in taxonomic abundances of the intestinal microbiota was observed between individuals with CF and the healthy controls, gut microbiota differences were also reported between people with CF when grouped by clinical parameters including % predicted FEV1 (measure of lung dysfunction) and the number of intravenous (IV) antibiotic courses in the previous 12 months. Notably, CF individuals presenting with severe lung dysfunction (% predicted FEV1 ≤ 40%) had significantly (p < 0.05) reduced gut microbiota diversity relative to those presenting with mild or moderate dysfunction. A significant negative correlation (−0.383, Simpson’s Diversity Index) was also observed between the number of IV antibiotic courses and gut microbiota diversity. Conclusions This is one of the largest single-centre studies on gut microbiota in stable adults with CF and demonstrates the significantly altered gut microbiota, including reduced microbial diversity seen in CF patients compared to healthy controls. The data show the impact that CF and it's management have on gut microbiota, presenting the opportunity to develop CF specific probiotics to minimise microbiota alterations.
  • Erratum to: Evolution of gut microbiota composition from birth to 24 weeks in the INFANTMET Cohort

    Hill, Cian J; Lynch, Denise B; Murphy, Kiera; Ulaszewska, Marynka; Jeffery, Ian B; O’Shea, Carol A; Watkins, Claire; Dempsey, Eugene; Mattivi, Fulvio; Tuohy, Kieran; Ross, R. P; Ryan, C. A; O’Toole, Paul W; Stanton, Catherine (Biomed Central, 2017-02-14)
    Erratum Following publication of this article [1], it has come to our attention that the name of the author Kieran Tuohy’s name was captured incorrectly as “Touhy” and instead should be Kieran Tuohy.

View more