• Effect of Drying Methods on the Steroidal Alkaloid Content of Potato Peels, Shoots and Berries

      Brunton, Nigel; Hossain, Mohammad Billal; Rai, Dilip K.; Department of Agriculture, Food and the Marine; 11F/050 (MDPI, 2016-03-25)
      The present study has found that dried potato samples yielded significantly higher levels of steroidal alkaloids such as α-solanine and α-chaconine than the corresponding fresh samples, as determined by the UPLC-MS/MS technique. Among the drying techniques used, air drying had the highest effect on steroidal alkaloid contents, followed by freeze drying and vacuum oven drying. There was no significant difference between the freeze dried and vacuum oven dried samples in their α-chaconine contents. However, freeze dried potato shoots and berries had significantly higher α-solanine contents (825 µg/g dry weight (DW) in shoots and 2453 µg/g DW in berries) than the vacuum oven dried ones (325 µg/g dry weight (DW) in shoots and 2080 µg/g DW in berries). The kinetics of steroidal alkaloid contents of potato shoots during air drying were monitored over a period of 21 days. Both α-solanine and α-chaconine content increased to their maximum values, 875 µg/g DW and 3385 µg/g DW, respectively, after 7 days of drying. The steroidal alkaloid contents of the shoots decreased significantly at day 9, and then remained unchanged until day 21. In line with the potato shoots, air dried potato tuber peels also had higher steroidal alkaloid content than the freeze dried and vacuum oven dried samples. However, a significant decrease of steroidal alkaloid content was observed in air dried potato berries, possibly due to degradation during slicing of the whole berries prior to air drying. Remarkable variation in steroidal alkaloid contents among different tissue types of potato plants was observed with the potato flowers having the highest content.
    • Exploring the effects of pulsed electric field processing parameters on polyacetylene extraction from carrot slices

      Aguilo-Aguayo, Ingrid; Abreu, Corina; Hossain, Mohammad Billal; Altisent, Rosa; Brunton, Nigel; Viñas, Inmaculada; Rai, Dilip K.; Department of Agriculture, Food and the Marine; Generalitat of Catalonia; 06TNITAFRC6; et al. (MDPI, 2015-03-02)
      The effects of various pulsed electric field (PEF) parameters on the extraction of polyacetylenes from carrot slices were investigated. Optimised conditions with regard to electric field strength (1–4 kV/cm), number of pulses (100–1500), pulse frequency (10–200 Hz) and pulse width (10–30 μs) were identified using response surface methodology (RSM) to maximise the extraction of falcarinol (FaOH), falcarindiol (FaDOH) and falcarindiol-3-acetate (FaDOAc) from carrot slices. Data obtained from RSM and experiments fitted significantly (p < 0.0001) the proposed second-order response functions with high regression coefficients (R2) ranging from 0.82 to 0.75. Maximal FaOH (188%), FaDOH (164.9%) and FaDOAc (166.8%) levels relative to untreated samples were obtained from carrot slices after applying PEF treatments at 4 kV/cm with 100 number of pulses of 10 μs at 10 Hz. The predicted values from the developed quadratic polynomial equation were in close agreement with the actual experimental values with low average mean deviations (E%) ranging from 0.68% to 3.58%.
    • Impact of pulsed electric field pre-treatment on nutritional and polyphenolic contents and bioactivities of light and dark brewer's spent grains

      Kumari, Bibha; Tiwari, Brijesh K; Walsh, Des; Griffin, Tomás; Islam, Nahidul; Lyng, James G.; Brunton, Nigel; Rai, Dilip K.; Department of Agriculture, Food and the Marine; European Union; et al. (Elsevier, 2019-04-30)
      Pulsed electric field (PEF) pre-treatment, at 2.8 kV/cm with 3000 pulses of 20 μs pulse-width, was applied on brewer's spent grains (BSG) followed by aqueous extraction at 55 °C, 220 rpm for 16 h. PEF pre-treatment showed significantly increased yields (p < 0.05) of carbohydrate, protein, starch and reducing sugar in extracts from dark BSG compared to untreated samples. Light BSG extracts had significantly higher (p < 0.05) levels of free d-glucose and total free amino acids (18.5–33.3 and 21–25 mg/g dry weight extract (Dwe)), compared to dark extracts (5 and 1.2 mg/g Dwe respectively). Dark BSG extracts showed significantly higher (p < 0.05) total phenolics (3.97–4.88 mg GAE/g Dwe) compared to light BSG extracts (0.83–1.40 mg GAE/g Dwe). Furthermore, PEF treated light BSG showed higher antimicrobial activity with minimum inhibition concentration (MIC) of 50 and 25 mg/mL against Salmonella typhimurium and Listeria monocytogenes, respectively compared to the untreated extracts (>50 mg/mL) with lowest MIC value of 1.56 mg/mL against Staphylococcus aureus. All the BSG extracts induced the release of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α) and chemokines (IL-8, MCP-1 and MIP-1α) confirming immunomodulatory activity.
    • Observations on the water distribution and extractable sugar content in carrot slices after pulsed electric field treatment

      Aguilo-Aguayo, Ingrid; Downey, Gerard; Keenan, Derek F.; Lyng, James G.; Brunton, Nigel; Rai, Dilip K.; Department of Agriculture, Food and the Marine; Generalitat of Catalonia; Lifelong Learning Programme; FIRM 06/TNI/AFRC6; et al. (Elsevier, 13/06/2014)
      The impact of pulsed electric field (PEF) processing conditions on the distribution of water in carrot tissue and extractability of soluble sugars from carrot slices was studied. Time domain NMR relaxometry was used to investigate the water proton mobility in PEF-treated carrot samples. Three distinct transverse relaxation peaks were observed in untreated carrots. After PEF treatment only two slightly-overlapping peaks were found; these were attributed to water present in the cytoplasm and vacuole of carrot xylem and phloem tissues. This post-treatment observation indicated an increase in water permeability of tissues and/or a loss of integrity in the tonoplast. In general, the stronger the electric field applied, the lower the area representing transverse relaxation (T2) values irrespective of treatment duration. Moreover an increase in sucrose, β- and α-glucose and fructose concentrations of carrot slice extracts after PEF treatment suggested increases in both cell wall and vacuole permeability as a result of exposure to pulsed electric fields.
    • Optimisation and validation of ultra-high performance liquid chromatographic-tandem mass spectrometry method for qualitative and quantitative analysis of potato steroidal alkaloids

      Hossain, Mohammad Billal; Rai, Dilip K.; Brunton, Nigel; Department of Agriculture, Food and the Marine; 11/F/050 (Elsevier, 2015-06-09)
      An ultra-high performance liquid chromatographic-tandem mass spectrometry (UHPLC–MS/MS) method for quantification of potato steroidal alkaloids, namely α-solanine, α-chaconine, solanidine and demissidine was developed and validated. Three different column chemistries, i.e. ethylene bridged hybrid (BEH) C18, hydrophilic lipophilic interaction and amide columns, were assessed. The BEH C18 column showed best separation and sensitivity for the alkaloids. Validation data (inter-day and intra-day combined) for accuracy and recovery ranged from 94.3 to 107.7% and 97.0 to 103.5%, respectively. The accuracy data were within the acceptable range of 15% as outlined in the United States Food and Drug Administration (USFDA) guidelines. The recovery data were consistent and reproducible with a coefficient of variation (CV) ranging from 6.2 to 9.7%. In addition, precision of the method also met the criteria of the USFDA with CV values lower than 15% even at lower limit of quantification (LLOQ), while the permissible variation is considered acceptable below 20%. The limit of detection and LLOQ of the four alkaloids were in the range of 0.001–0.004 μg/mL whereas the linearities of the standard curves were between 0.980 and 0.995.
    • Potential of cultivar and crop management to affect phytochemical content in winter-grown sprouting broccoli (Brassica oleracea L. var. italica)

      Reilly, Kim; Valverde, Juan; Finn, Leo; Rai, Dilip K.; Brunton, Nigel; Sorenson, Jens C; Sorenson, Hilmer; Gaffney, Michael; Department of Agriculture, Food and the Marine, Ireland; 06/NITAFRC6 (Wiley, 08/07/2013)
      BACKGROUND: Variety and crop management strategies affect the content of bioactive compounds (phenolics, flavonoids and glucosinolates) in green broccoli (calabrese) types, which are cultivated during summer and autumn in temperate European climates. Sprouting broccoli types are morphologically distinct and are grown over the winter season and harvested until early spring. Thus they show considerable potential for development as an import substitution crop for growers and consumers during the ‘hungry gap’ of early spring. The present study investigated the effect of variety and management practices on phytochemical content in a range of sprouting broccoli varieties. RESULTS: Yields were significantly higher in white sprouting broccoli varieties. Levels of phenolics and flavonoids were in the range 81.6-270.4 and 16.9–104.8 mg 100g -1 FW respectively depending on year and cultivar, and were highest in varieties TZ 5052, TZ 5055, Red Admiral and Improved White Sprouting. In-row spacing did not affect flavonoid content. Phenolic and flavonoid content generally increased with increasing floret maturity and levels were high in edible portions of the crop. Crop wastes (leaf and flower) contained 145.9-239.3 and 21.5–116.6 mg 100g -1 FW total phenolics and flavonoids respectively depending on cultivar, tissue and year. Climatic factors had a significant effect on phenolic and flavonoid content. Levels of total and some individual glucosinolates were higher in sprouting broccoli than in the green broccoli variety Ironman. CONCLUSION: Levels of total phenolics, flavonoids and glucosinolates are higher in sprouting than green broccoli types. Sprouting broccoli represents an excellent source of dietary bioactive compounds.
    • Profiling of Phytochemicals in Tissues from Sclerocarya birrea by HPLC-MS and Their Link with Antioxidant Activity

      Russo, Daniela; Kenny, Owen; Smyth, Thomas J.; Milella, Luigi; Diop, Moussoukhoye Sissokho; Rai, Dilip K.; Brunton, Nigel; Hossain, Mohammad Billal; Department of Agriculture, Food and the Marine (Hindawi, 2013-04-29)
      High performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was employed to investigate the differences in phytochemicals in roots, bark, and leaf of Sclerocarya birrea (marula) for methanol and water extracts that exhibited the best antioxidant activities. As many as 36 compounds were observed in the extracts of these tissues of which 27 phenolic compounds were tentatively identified. The HPLC-MS/MS results showed flavonoid glycosides were prominent in leaf extracts while the galloylated tannins were largely in bark and root extracts. Four flavonoid glycosides that were reported for the first time in the marula leaf have been identified. The HPLC-MS/MS studies also illustrated different degrees (highest degree = 3) of oligomerisation and galloylation of tannins in the bark and root extracts.
    • Qualitative and Quantitative Analysis of Polyphenols in Lamiaceae Plants—A Review

      Tzima, Katerina; Brunton, Nigel; Rai, Dilip; Teagasc Walsh Fellowship Programme; 2016038 (MDPI AG, 2018-03-26)
      Lamiaceae species are promising potential sources of natural antioxidants, owing to their high polyphenol content. In addition, increasing scientific and epidemiological evidence have associated consumption of foods rich in polyphenols with health benefits such as decreased risk of cardiovascular diseases mediated through anti-inflammatory effects. The complex and diverse nature of polyphenols and the huge variation in their levels in commonly consumed herbs make their analysis challenging. Innovative robust analytical tools are constantly developing to meet these challenges. In this review, we present advances in the state of the art for the identification and quantification of polyphenols in Lamiaceae species. Novel chromatographic techniques that have been employed in the past decades are discussed, ranging from ultra-high-pressure liquid chromatography to hyphenated spectroscopic methods, whereas performance characteristics such as selectivity and specificity are also summarized.
    • Recovery of Steroidal Alkaloids from Potato Peels Using Pressurized Liquid Extraction

      Rawson, Ashish; Aguiló-Aguayo, Ingrid; Brunton, Nigel; Hossain, Mohammad Billal; Rai, Dilip K.; Department of Agriculture, Food and the Marine; 08/RD/AFRC/673 (MDPI, 2015-05-13)
      A higher yield of glycoalkaloids was recovered from potato peels using pressurized liquid extraction (1.92 mg/g dried potato peels) compared to conventional solid–liquid extraction (0.981 mg/g dried potato peels). Response surface methodology deduced the optimal temperature and extracting solvent (methanol) for the pressurized liquid extraction (PLE) of glycoalkaloids as 80 °C in 89% methanol. Using these two optimum PLE conditions, levels of individual steroidal alkaloids obtained were of 597, 873, 374 and 75 µg/g dried potato peel for α-solanine, α-chaconine, solanidine and demissidine respectively. Corresponding values for solid liquid extraction were 59%, 46%, 40% and 52% lower for α-solanine, α-chaconine, solanidine and demissidine respectively
    • A Review of Extraction and Analysis of Bioactives in Oat and Barley and Scope for Use of Novel Food Processing Technologies

      Gangopadhyay, Nirupama; Rai, Dilip K.; Brunton, Nigel; Hossain, Mohammad Billal; Department of Agriculture, Food and the Marine.; 11/SF/317 (MDPI, 2015-06-12)
      Oat and barely are cereal crops mainly used as animal feed and for the purposes of malting and brewing, respectively. Some studies have indicated that consumption of oat and barley rich foods may reduce the risk of some chronic diseases such as coronary heart disease, type II diabetes and cancer. Whilst there is no absolute consensus, some of these benefits may be linked to presence of compounds such as phenolics, vitamin E and β-glucan in these cereals. A number of benefits have also been linked to the lipid component (sterols, fatty acids) and the proteins and bioactive peptides in oats and barley. Since the available evidence is pointing toward the possible health benefits of oat and barley components, a number of authors have examined techniques for recovering them from their native sources. In the present review, we summarise and examine the range of conventional techniques that have been used for the purpose of extraction and detection of these bioactives. In addition, the recent advances in use of novel food processing technologies as a substitute to conventional processes for extraction of bioactives from oats and barley, has been discussed.
    • Ultrasound-assisted extraction of polyphenols from potato peels: profiling and kinetic modelling

      Kumari, Bibha; Tiwari, Brijesh K; Hossain, Mohammad Billal; Rai, Dilip K.; Brunton, Nigel; Department of Agriculture, Food and Marine; FIRM/11/F/050 (Wiley, 2017-02-14)
      Ultrasound‐assisted extraction (UAE) at 33 and 42 kHz has been investigated in the extraction of polyphenols from peels of two potato varieties, cream‐skinned Lady Claire (LC) and pink‐skinned Lady Rosetta (LR), commonly used in snack food production. Extraction efficacy between the UAE‐untreated (control) and the UAE‐treated extracts was assessed on the total phenolic content and antioxidant capacities (DPPH and FRAP). Application of UAE showed significantly higher recovery of phenolic compounds compared to solid–liquid extraction process alone. Lower ultrasonic frequency (33 kHz) was more effective in recovering polyphenols compared to 42 kHz ultrasonic treatment. The liquid chromatography‐tandem mass spectrometry revealed that chlorogenic acid and caffeic acid were the most prevalent phenolics in LR peels, whereas caffeic acid was dominant in LC peels. Peleg's equation showed a good correlation (R2 > 0.92) between the experimental values and the predicted values on the kinetics of UAE of phenolic compounds.