• The Prebiotic Effect of Australian Seaweeds on Commensal Bacteria and Short Chain Fatty Acid Production in a Simulated Gut Model

      Shannon, Emer; Conlon, Michael; Hayes, Maria (MDPI AG, 2022-05-23)
      Diet is known to affect the composition and metabolite production of the human gut microbial community, which in turn is linked with the health and immune status of the host. Whole seaweeds (WH) and their extracts contain prebiotic components such as polysaccharides (PS) and polyphenols (PP). In this study, the Australian seaweeds, Phyllospora comosa, Ecklonia radiata, Ulva ohnoi, and their PS and PP extracts were assessed for potential prebiotic activities using an in vitro gut model that included fresh human faecal inoculum. 16S rRNA sequencing post gut simulation treatment revealed that the abundance of several taxa of commensal bacteria within the phylum Firmicutes linked with short chain fatty acid (SCFA) production, and gut and immune function, including the lactic acid producing order Lactobacillales and the chief butyrate-producing genera Faecalibacteria, Roseburia, Blautia, and Butyricicoccus were significantly enhanced by the inclusion of WH, PS and PP extracts. After 24 h fermentation, the abundance of total Firmicutes ranged from 57.35–81.55% in the WH, PS and PP samples, which was significantly greater (p ≤ 0.01) than the inulin (INU) polysaccharide control (32.50%) and the epigallocatechingallate (EGCG) polyphenol control (67.13%); with the exception of P. comosa PP (57.35%), which was significantly greater than INU only. However, all WH, PS and PP samples also increased the abundance of the phylum Proteobacteria; while the abundance of the phylum Actinobacteria was decreased by WH and PS samples. After 24 h incubation, the total and individual SCFAs present, including butyric, acetic and propionic acids produced by bacteria fermented with E. radiata and U. ohnoi, were significantly greater than the SCFAs identified in the INU and EGCG controls. Most notably, total SCFAs in the E. radiata PS and U. ohnoi WH samples were 227.53 and 208.68 µmol/mL, respectively, compared to only 71.05 µmol/mL in INU and 7.76 µmol/mL in the EGCG samples. This study demonstrates that whole seaweeds and their extracts have potential as functional food ingredients to support normal gut and immune function.
    • Seaweed Components as Potential Modulators of the Gut Microbiota

      Shannon, Emer; Conlon, Michael; Hayes, Maria; Marie Skłodowska-Curie; 754380. (MDPI AG, 2021-06-23)
      Macroalgae, or seaweeds, are a rich source of components which may exert beneficial effects on the mammalian gut microbiota through the enhancement of bacterial diversity and abundance. An imbalance of gut bacteria has been linked to the development of disorders such as inflammatory bowel disease, immunodeficiency, hypertension, type-2-diabetes, obesity, and cancer. This review outlines current knowledge from in vitro and in vivo studies concerning the potential therapeutic application of seaweed-derived polysaccharides, polyphenols and peptides to modulate the gut microbiota through diet. Polysaccharides such as fucoidan, laminarin, alginate, ulvan and porphyran are unique to seaweeds. Several studies have shown their potential to act as prebiotics and to positively modulate the gut microbiota. Prebiotics enhance bacterial populations and often their production of short chain fatty acids, which are the energy source for gastrointestinal epithelial cells, provide protection against pathogens, influence immunomodulation, and induce apoptosis of colon cancer cells. The oral bioaccessibility and bioavailability of seaweed components is also discussed, including the advantages and limitations of static and dynamic in vitro gastrointestinal models versus ex vivo and in vivo methods. Seaweed bioactives show potential for use in prevention and, in some instances, treatment of human disease. However, it is also necessary to confirm these potential, therapeutic effects in large-scale clinical trials. Where possible, we have cited information concerning these trials
    • Seaweed Components as Potential Modulators of the Gut Microbiota

      Shannon, Emer; Conlon, Michael; Hayes, Maria; Teagasc; European Union; 754380 (MDPI AG, 2021-06-23)
      Macroalgae, or seaweeds, are a rich source of components which may exert beneficial effects on the mammalian gut microbiota through the enhancement of bacterial diversity and abundance. An imbalance of gut bacteria has been linked to the development of disorders such as inflammatory bowel disease, immunodeficiency, hypertension, type-2-diabetes, obesity, and cancer. This review outlines current knowledge from in vitro and in vivo studies concerning the potential therapeutic application of seaweed-derived polysaccharides, polyphenols and peptides to modulate the gut microbiota through diet. Polysaccharides such as fucoidan, laminarin, alginate, ulvan and porphyran are unique to seaweeds. Several studies have shown their potential to act as prebiotics and to positively modulate the gut microbiota. Prebiotics enhance bacterial populations and often their production of short chain fatty acids, which are the energy source for gastrointestinal epithelial cells, provide protection against pathogens, influence immunomodulation, and induce apoptosis of colon cancer cells. The oral bioaccessibility and bioavailability of seaweed components is also discussed, including the advantages and limitations of static and dynamic in vitro gastrointestinal models versus ex vivo and in vivo methods. Seaweed bioactives show potential for use in prevention and, in some instances, treatment of human disease. However, it is also necessary to confirm these potential, therapeutic effects in large-scale clinical trials. Where possible, we have cited information concerning these trials.