• A Bioengineered Nisin Derivative, M21A, in Combination with Food Grade Additives Eradicates Biofilms of Listeria monocytogenes

      Smith, Muireann K.; Draper, Lorraine A.; Hazelhoff, Pieter-Jan; Cotter, Paul D.; Ross, R Paul; Hill, Colin; Science Foundation Ireland; SFI/12/RC/2273 (Frontiers, 30/11/2016)
      The burden of foodborne disease has large economic and social consequences worldwide. Despite strict regulations, a number of pathogens persist within the food environment, which is greatly contributed to by a build-up of resistance mechanisms and also through the formation of biofilms. Biofilms have been shown to be highly resistant to a number of antimicrobials and can be extremely difficult to remove once they are established. In parallel, the growing concern of consumers regarding the use of chemically derived antimicrobials within food has led to a drive toward more natural products. As a consequence, the use of naturally derived antimicrobials has become of particular interest. In this study we investigated the efficacy of nisin A and its bioengineered derivative M21A in combination with food grade additives to treat biofilms of a representative foodborne disease isolate of Listeria monocytogenes. Investigations revealed the enhanced antimicrobial effects, in liquid culture, of M21A in combination with citric acid or cinnamaldehyde over its wild type nisin A counterpart. Subsequently, an investigation was conducted into the effects of these combinations on an established biofilm of the same strain. Nisin M21A (0.1 μg/ml) alone or in combination with cinnamaldehyde (35 μg/ml) or citric acid (175 μg/ml) performed significantly better than combinations involving nisin A. All combinations of M21A with either citric acid or cinnamaldehyde eradicated the L. monocytogenes biofilm (in relation to a non-biofilm control). We conclude that M21A in combination with available food additives could further enhance the antimicrobial treatment of biofilms within the food industry, simply by substituting nisin A with M21A in current commercial products such as Nisaplin® (Danisco, DuPont).
    • Evaluation of Phage Therapy in the Context of Enterococcus faecalis and Its Associated Diseases

      Bolocan, Andrei S.; Upadrasta, Aditya; de Almeida Bettio, Pedro H.; Clooney, Adam G.; Draper, Lorraine A.; Ross, R. Paul; Hill, Colin; Science Foundation Ireland; European Union; Janssen Biotech, Inc.; et al. (MDPI, 2019-04-20)
      Bacteriophages (phages) or bacterial viruses have been proposed as natural antimicrobial agents to fight against antibiotic-resistant bacteria associated with human infections. Enterococcus faecalis is a gut commensal, which is occasionally found in the mouth and vaginal tract, and does not usually cause clinical problems. However, it can spread to other areas of the body and cause life-threatening infections, such as septicemia, endocarditis, or meningitis, in immunocompromised hosts. Although E. faecalis phage cocktails are not commercially available within the EU or USA, there is an accumulated evidence from in vitro and in vivo studies that have shown phage efficacy, which supports the idea of applying phage therapy to overcome infections associated with E. faecalis. In this review, we discuss the potency of bacteriophages in controlling E. faecalis, in both in vitro and in vivo scenarios. E. faecalis associated bacteriophages were compared at the genome level and an attempt was made to categorize phages with respect to their suitability for therapeutic application, using orthocluster analysis. In addition, E. faecalis phages have been examined for the presence of antibiotic-resistant genes, to ensure their safe use in clinical conditions. Finally, the domain architecture of E. faecalis phage-encoded endolysins are discussed.
    • Impact of Environmental Factors on Bacteriocin Promoter Activity in Gut-Derived Lactobacillus salivarius

      Guinane, Caitriona M.; Piper, Clare; Draper, Lorraine A.; O'Connor, Paula M.; Hill, Colin; Ross, R Paul; Cotter, Paul D.; Science Foundation Ireland; SFI/11/PI/1137 (American Society for Microbiology, 04/09/2015)
      Bacteriocin production is regarded as a desirable probiotic trait that aids in colonization and persistence in the gastrointestinal tract (GIT). Strains of Lactobacillus salivarius, a species associated with the GIT, are regarded as promising probiotic candidates and have a number of associated bacteriocins documented to date. These include multiple class IIb bacteriocins (salivaricin T, salivaricin P, and ABP-118) and the class IId bacteriocin bactofencin A, which show activity against medically important pathogens. However, the production of a bacteriocin in laboratory media does not ensure production under stressful environmental conditions, such as those encountered within the GIT. To allow this issue to be addressed, the promoter regions located upstream of the structural genes encoding the L. salivarius bacteriocins mentioned above were fused to a number of reporter proteins (green fluorescent protein [GFP], red fluorescent protein [RFP], and luciferase [Lux]). Of these, only transcriptional fusions to GFP generated signals of sufficient strength to enable the study of promoter activity in L. salivarius. While analysis of the class IIb bacteriocin promoter regions indicated relatively weak GFP expression, assessment of the promoter of the antistaphylococcal bacteriocin bactofencin A revealed a strong promoter that is most active in the absence of the antimicrobial peptide and is positively induced in the presence of mild environmental stresses, including simulated gastric fluid. Taken together, these data provide information on factors that influence bacteriocin production, which will assist in the development of strategies to optimize in vivo and in vitro production of these antimicrobials.
    • Listeriolysin S, a Novel Peptide Haemolysin Associated with a Subset of Lineage I Listeria monocytogenes

      Cotter, Paul D.; Draper, Lorraine A.; Lawton, Elaine M.; Daly, Karen M.; Groeger, David S.; Casey, Patrick G.; Ross, R Paul; Hill, Colin; Science Foundation Ireland; 06/IN.1/B98 (PLOS, 12/09/2008)
      Streptolysin S (SLS) is a bacteriocin-like haemolytic and cytotoxic virulence factor that plays a key role in the virulence of Group A Streptococcus (GAS), the causative agent of pharyngitis, impetigo, necrotizing fasciitis and streptococcal toxic shock syndrome. Although it has long been thought that SLS and related peptides are produced by GAS and related streptococci only, there is evidence to suggest that a number of the most notorious Gram-positive pathogenic bacteria, including Listeria monocytogenes, Clostridium botulinum and Staphylococcus aureus, produce related peptides. The distribution of the L. monocytogenes cluster is particularly noteworthy in that it is found exclusively among a subset of lineage I strains; i.e., those responsible for the majority of outbreaks of listeriosis. Expression of these genes results in the production of a haemolytic and cytotoxic factor, designated Listeriolysin S, which contributes to virulence of the pathogen as assessed by murine- and human polymorphonuclear neutrophil–based studies. Thus, in the process of establishing the existence of an extended family of SLS-like modified virulence peptides (MVPs), the genetic basis for the enhanced virulence of a proportion of lineage I L. monocytogenes may have been revealed.
    • The two peptide lantibiotic lacticin 3147 acts synergistically with polymyxin to inhibit Gram negative bacteria

      Draper, Lorraine A.; Cotter, Paul D.; Hill, Colin; Ross, R Paul; Science Foundation Ireland; 10/IN.1/B3027 (Biomed Central, 26/09/2013)
      Background: The emergence of bacterial drug resistance encourages the re-evaluation of the potential of existing antimicrobials. Lantibiotics are post-translationally modified, ribosomally synthesised antimicrobial peptides with a broad spectrum antimicrobial activity. Here, we focussed on expanding the potential of lacticin 3147, one of the most studied lantibiotics and one which possesses potent activity against a wide range of Gram positive species including many nosocomial pathogens. More specifically, our aim was to investigate if lacticin 3147 activity could be enhanced when combined with a range of different clinical antibiotics. Results: Initial screening revealed that polymyxin B and polymyxin E (colistin) exhibited synergistic activity with lacticin 3147. Checkerboard assays were performed against a number of strains, including both Gram positive and Gram negative species. The resultant fractional inhibitory concentration (FIC) index values established that, while partial synergy was detected against Gram positive targets, synergy was obvious against Gram negative species, including Cronobacter and E. coli. Conclusions: Combining lacticin 3147 with low levels of a polymyxin could provide a means of broadening target specificity of the lantibiotic, while also reducing polymyxin use due to the lower concentrations required as a result of synergy.
    • ΦCrAss001 represents the most abundant bacteriophage family in the human gut and infects Bacteroides intestinalis

      Shkoporov, Andrey N.; Khokhlova, Ekaterina V.; Fitzgerald, C. Brian; Stockdale, Stephen R.; Draper, Lorraine A.; Hill, Colin; Ross, R Paul; Science Foundation Ireland; Janssen Biotech, Inc.; SFI/12/RC/2273; et al. (Nature Publishing Group, 2018-11-14)
      CrAssphages are an extensive and ubiquitous family of tailed bacteriophages, predicted to infect bacteria of the order Bacteroidales. Despite being found in ~50% of individuals and representing up to 90% of human gut viromes, members of this viral family have never been isolated in culture and remain understudied. Here, we report the isolation of a CrAssphage (ΦCrAss001) from human faecal material. This bacteriophage infects the human gut symbiont Bacteroides intestinalis, confirming previous in silico predictions of the likely host. DNA sequencing demonstrates that the bacteriophage genome is circular, 102 kb in size, and has unusual structural traits. In addition, electron microscopy confirms that ΦcrAss001 has a podovirus-like morphology. Despite the absence of obvious lysogeny genes, ΦcrAss001 replicates in a way that does not disrupt proliferation of the host bacterium, and is able to maintain itself in continuous host culture during several weeks.