• Prawn Shell Chitosan Has Anti-Obesogenic Properties, Influencing Both Nutrient Digestibility and Microbial Populations in a Pig Model

      Egan, Aine M.; Sweeney, Torres; Hayes, Maria; O'Doherty, John V.; Marine Institute; Department of Agriculture, Food and the Marine; MFFRI/07/01 (PLOS, 04/12/2015)
      The potential of natural products to prevent obesity have been investigated, with evidence to suggest that chitosan has anti-obesity effects. The current experiment investigated the anti-obesity potential of prawn shell derived chitosan on a range of variables relevant to obesity in a pig model. The two dietary treatment groups included in this 63 day study were: T1) basal diet and T2) basal diet plus 1000 ppm chitosan (n = 20 gilts per group (70 ± 0.90 kg). The parameter categories which were assessed included: performance, nutrient digestibility, serum leptin concentrations, nutrient transporter and digestive enzyme gene expression and gut microbial populations. Pigs offered chitosan had reduced feed intake and final body weight (P< 0.001), lower ileal digestibility of dry matter (DM), gross energy (GE) (P< 0.05) and reduced coefficient of apparent total tract digestibility (CATTD) of gross energy and nitrogen (P<0.05) when compared to the basal group. Fatty acid binding protein 2 (FABP2) gene expression was down-regulated in pigs offered chitosan (P = 0.05) relative to the basal diet. Serum leptin concentrations increased (P< 0.05) in animals offered the chitosan diet compared to pigs offered the basal diet. Fatness traits, back-fat depth (mm), fat content (kg), were significantly reduced while lean meat (%) was increased (P<0.05) in chitosan supplemented pigs. Pigs offered chitosan had decreased numbers of Firmicutes in the colon (P <0.05), and Lactobacillus spp. in both the caecum (P <0.05) and colon (P <0.001). Bifidobacteria populations were increased in the caecum of animals offered the chitosan diet (P <0.05). In conclusion, these findings suggest that prawn shell chitosan has potent anti-obesity/body weight control effects which are mediated through multiple biological systems in vivo.