• Hydrolysis of Ks1- and L-casein-derived peptides with a broad specifcity aminopeptidase and proline specific aminopeptidases from Lactococcus lactis subsp. cremoris AM2

      Bouchier, Paul J.; Fitzgerald, Richard J.; O'Cuinn, Gerard; Forbairt; IRish Dairy LEvy; European Union; AIR2-CT94-1560 (Wiley, 1999-03-29)
      Aminopeptidase hydrolysis of αs1- and β-casein-derived synthetic peptides containing non-consecutive and consecutive proline residues was characterised. Aminopeptidase P (Pep P) (EC 3.4.11.9) or post-proline dipeptidyl aminopeptidase (PPDA) (EC 3.4.14.5) along with lysine-paranitroanilide hydrolase (KpNA-H) (EC 3.4.11.1) activities are required in the degradation of peptides containing non-consecutive proline residues. However, both Pep P and PPDA along with KpNA-H are required for hydrolysis of peptides containing consecutive proline residues. The results demonstrate the mechanism by which combinations of purified general and proline specific aminopeptidases from Lactococcus lactis subsp. cremoris AM2 hydrolyse peptides containing proline residues.
    • Identification of short peptide sequences in the nanofiltration permeate of a bioactive whey protein hydrolysate

      Le Maux, Solene; Nongonierma, Alice B.; Murray, Brian A.; Kelly, Philip; Fitzgerald, Richard J.; Enterprise Ireland; TC2013-0001 (Elsevier, 16/09/2015)
      Short peptides in food protein hydrolysates are of significant interest as they may be highly bioactive whilst also being bioavailable. A dipeptidyl peptidase IV (DPP-IV) inhibitory whey protein hydrolysate (WPH) was fractionated using nanofiltration (NF) with a 200 Da MWCO membrane. The DPP-IV half maximal inhibitory concentration of the NF permeate (IC50 = 0.66 ± 0.08 mg protein equivalent mL− 1) was significantly more potent (P > 0.05) than that of the starting WPH (IC50 = 0.94 ± 0.24 mg protein equivalent mL− 1) and associated retentate (IC50 = 0.82 ± 0.13 mg protein equivalent mL− 1). This confirmed the contribution of short peptides within the NF permeate to the overall DPP-IV inhibitory activity. An hydrophilic interaction liquid chromatography (HILIC-) and reverse-phase (RP-) liquid chromatography tandem mass spectrometry (LC–MS/MS) strategy, based on two retention time models, allowed detection of eight free amino acids and eight di- to tetrapeptides in the NF permeate. The potential sequences of the peptides within the NF permeate were then ranked on the basis of their highest probability of occurrence. A confirmatory study with synthetic peptides showed that valine–alanine (VA), valine–leucine (VL), tryptophan–leucine (WL) and tryptophan–isoleucine (WI) displayed DPP-IV IC50 values < 170 μM. The NF and LC–MS strategies employed herein represent a new approach for the targeted identification of short peptides within bioactive food protein hydrolysates.
    • Marine Functional Foods Research Initiative (NutraMara)

      Troy, Declan J.; Tiwari, Brijesh K; Hayes, Maria; Ross, R Paul; STANTON, CATHERINE; Johnson, Mark; Stengel, Dagmar; O'Doherty, John V.; Fitzgerald, Richard J.; McSorley, Emeir; et al. (Marine Institute, 2017-12)
      The NutraMara – Marine Functional Foods Research Initiative was conceived by Sea Change - A Marine Knowledge, Research and Innovation Strategy for Ireland 2007-2013. The goal was to develop a collaborative funding mechanism that would create new research capacity and build the capabilities required to maximise the potential of Ireland’s extensive marine bioresources. By supporting a strong interdisciplinary research team, capable of exploring marine animals and plants as a sustainable source of materials for use as functional ingredients and foods, the vision for NutraMara was to position Ireland to the fore in use of marine bioresources as health beneficial ingredients. Commencing in 2008 and supported by funds of €5.2 million from the Marine Institute and the Department of Agriculture, Food and the Marine, the research programme was led by Teagasc as the head of a multi-institutional consortium. The NutraMara consortium comprises marine bioresources and bioscience expertise, with food science and technology expertise from University College Cork; University College Dublin; the National University of Ireland Galway; the University of Limerick and Ulster University. Research effort was directed towards exploring Ireland’s marine bioresources – including macro- and microalgae, finfish and shellfish from wild and cultured sources: and discards from processing fish as sources of novel ingredients with bioactive characteristics. This discovery activity involved the collection of over 600 samples from 39 species of algae and fish and the analysis of 5,800 extracts, which resulted in 3,000 positive “hits” for bioactivity. The NutraMara consortium has built a strong research capacity to identify, characterise and evaluate marine-origin bioactives for use as/in functional foods. It further built the capacity to develop model foods enhanced with these marine-origin functional ingredients; providing insights to the processing challenges associated with producing functional ingredients from marine organisms. The consortium was actively engaged in research activities designed to identify and assess bioactive compounds from available marine resources, including polyphenols, proteins/peptides, amino acids, polysaccharides, polyunsaturated fatty acids and materials with antioxidant, probiotic or prebiotic properties. A key component of NutraMara’s activities was the development of human capital. The recruitment of M.Sc. and PhD students and their integration within a dynamic research environment that has strong links to industry, provided lasting expertise and capabilities, which are relevant to the needs of Ireland’s food and marine sectors. NutraMara research led to the awarding of eighteen PhDs and recruitment of 21 post-doctoral researchers over the eight year research programme. In excess of 80 peer reviewed publications resulted from this research and more publications are planned. A further 100 posters and conference presentations were also delivered by NutraMara researchers and Principal Investigators. The development and implementation of training and exchange programmes aimed at providing early stage researchers with inter-disciplinary skills that are critical to their development as researchers, enhanced the research capacity of institutions, the industry sectors and the country as a whole. Principal Investigators involved in leading the NutraMara research programme have secured additional research grants of almost €6 million from national and international sources and are engaged in extensive research collaboration involving marine and food research expertise; an activity which did not exist prior to NutraMara. The dissemination of knowledge and transfer of research results to industry were key activities in the research programme. The research outputs and visibility of NutraMara activity nationally resulted in 10 companies engaging in research and development activity with the consortium. Regular workshops and conferences organised by NutraMara attracted close to five hundred participants from Ireland and overseas. Members of the NutraMara core PI group have contributed to the formulation of new national foods and marine research policy and national research agenda, both during the national prioritisation exercise and in sectoral research strategies. This final project report describes the process by which research targets were identified, and the results of extensive screening and evaluation of compounds extracted from marine bioresources. It also highlights the development of new protocols designed to extract compounds in ways that are food friendly. Evaluating the functional properties, bioactivity and bioavailability of high potential marine compounds involved in vitro and in vivo testing. Pilot animal and human intervention studies yielded further insight to the potential and challenges in developing marine functional ingredients. As a result of work completed within the NutraMara consortium, Ireland is well positioned to continue to contribute to the development of ingredients derived from marine organisms and in doing so support the on-going development of Ireland’s food sector.