• The Effect of Feeding Bt MON810 Maize to Pigs for 110 Days on Intestinal Microbiota

      Buzoianu, Stefan G.; Walsh, Maria C.; Rea, Mary; O'Sullivan, Orla; Crispie, Fiona; Cotter, Paul D.; Ross, R Paul; Gardiner, Gillian E.; Lawlor, Peadar G; European Union; et al. (PLOS, 04/05/2012)
      Objective To assess the effects of feeding Bt MON810 maize to pigs for 110 days on the intestinal microbiota. Methodology/Principal Findings Forty male pigs (~40 days old) were blocked by weight and litter ancestry and assigned to one of four treatments; 1) Isogenic maize-based diet for 110 days (Isogenic); 2) Bt maize-based diet (MON810) for 110 days (Bt); 3) Isogenic maize-based diet for 30 days followed by a Bt maize-based diet for 80 days (Isogenic/Bt); 4) Bt maize-based diet for 30 days followed by an isogenic maize-based diet for 80 days (Bt/Isogenic). Enterobacteriaceae, Lactobacillus and total anaerobes were enumerated in the feces using culture-based methods on days 0, 30, 60 and 100 of the study and in ileal and cecal digesta on day 110. No differences were found between treatments for any of these counts at any time point. The relative abundance of cecal bacteria was also determined using high-throughput 16 S rRNA gene sequencing. No differences were observed in any bacterial taxa between treatments, with the exception of the genus Holdemania which was more abundant in the cecum of pigs fed the isogenic/Bt treatment compared to pigs fed the Bt treatment (0.012 vs 0.003%; P≤0.05). Conclusions/Significance Feeding pigs a Bt maize-based diet for 110 days did not affect counts of any of the culturable bacteria enumerated in the feces, ileum or cecum. Neither did it influence the composition of the cecal microbiota, with the exception of a minor increase in the genus Holdemania. As the role of Holdemania in the intestine is still under investigation and no health abnormalities were observed, this change is not likely to be of clinical significance. These results indicate that feeding Bt maize to pigs in the context of its influence on the porcine intestinal microbiota is safe.
    • Effect of Lactobacillus salivarius Bacteriocin Abp118 on the Mouse and Pig Intestinal Microbiota

      Riboulet-Bisson, Eliette; Sturme, Mark H. J.; Jeffery, Ian B; O'Donnell, Michelle M.; Neville, B. Anne; Forde, Brian M; Claesson, Marcus J.; Harris, Hugh; Gardiner, Gillian E.; Casey, Patrick G.; et al. (PLOS, 17/02/2012)
      Lactobacilli are Gram-positive bacteria that are a subdominant element in the human gastrointestinal microbiota, and which are commonly used in the food industry. Some lactobacilli are considered probiotic, and have been associated with health benefits. However, there is very little culture-independent information on how consumed probiotic microorganisms might affect the entire intestinal microbiota. We therefore studied the impact of the administration of Lactobacillus salivarius UCC118, a microorganism well characterized for its probiotic properties, on the composition of the intestinal microbiota in two model animals. UCC118 has anti-infective activity due to production of the bacteriocin Abp118, a broad-spectrum class IIb bacteriocin, which we hypothesized could impact the microbiota. Mice and pigs were administered wild-type (WT) L. salivarius UCC118 cells, or a mutant lacking bacteriocin production. The microbiota composition was determined by pyrosequencing of 16S rRNA gene amplicons from faeces. The data show that L. salivarius UCC118 administration had no significant effect on proportions of major phyla comprising the mouse microbiota, whether the strain was producing bacteriocin or not. However, L. salivarius UCC118 WT administration led to a significant decrease in Spirochaetes levels, the third major phylum in the untreated pig microbiota. In both pigs and mice, L. salivarius UCC118 administration had an effect on Firmicutes genus members. This effect was not observed when the mutant strain was administered, and was thus associated with bacteriocin production. Surprisingly, in both models, L. salivarius UCC118 administration and production of Abp118 had an effect on Gram-negative microorganisms, even though Abp118 is normally not active in vitro against this group of microorganisms. Thus L. salivarius UCC118 administration has a significant but subtle impact on mouse and pig microbiota, by a mechanism that seems at least partially bacteriocin-dependent
    • Nisin in Combination with Cinnamaldehyde and EDTA to Control Growth of Escherichia coli Strains of Swine Origin

      Field, Des; Baghou, Inès; Rea, Mary; Gardiner, Gillian E.; Ross, R Paul; Hill, Colin; Science Foundation Ireland; SFI/12/RC/2273; 10/IN.1/B3027 (MDPI AG, 2017-12-12)
      Post-weaning diarrhoea (PWD) due to enterotoxigenic Escherichia coli (ETEC) is an economically important disease in pig production worldwide. Although antibiotics have contributed significantly to mitigate the economic losses caused by PWD, there is major concern over the increased incidence of antimicrobial resistance among bacteria isolated from pigs. Consequently, suitable alternatives that are safe and effective are urgently required. Many naturally occurring compounds, including the antimicrobial peptide nisin and a number of plant essential oils, have been widely studied and are reported to be effective as antimicrobial agents against pathogenic microorganisms. Here, we evaluate the potential of nisin in combination with the essential oil cinnamaldehyde and ethylenediaminetetraacetic acid (EDTA) to control the growth of E. coli strains of swine origin including two characterized as ETEC. The results reveal that the use of nisin (10 μM) with low concentrations of trans-cinnamaldehyde (125 μg/mL) and EDTA (0.25–2%) resulted in extended lag phases of growth compared to when either antimicrobial is used alone. Further analysis through kill curves revealed that an approximate 1-log reduction in E. coli cell counts was observed against the majority of targets tested following 3 h incubation. These results highlight the potential benefits of combining the natural antimicrobial nisin with trans-cinnamaldehyde and EDTA as a new approach for the inhibition of E. coli strains of swine origin.
    • Survival characteristics of monophasic Salmonella Typhimurium 4,[5],12:i:- strains derived from pig feed ingredients and compound feed

      Burns, Ann Marie; Duffy, Geraldine; Walsh, Des; Tiwari, Brijesh K; Grant, Jim; Lawlor, Peadar G; Gardiner, Gillian E.; Teagasc Walsh Fellowship Programme; 2011010 (Elsevier, 2015-12-09)
      The presence of Salmonella in animal feed or feed ingredients at the feed mill or on-farm is a cause for concern, as it can be transmitted to food-producing animals and subsequently to humans. The objective of this study was to determine the survival characteristics of five feed ingredient- and feed-derived monophasic Salmonella Typhimurium 4,[5],12:i:- strains. The first part of the study investigated thermal inactivation using an immersed heating coil apparatus. A Weibull model provided a good fit, with low RMSE values (0.04–0.43) and high R2 values (0.93–0.99) obtained. There was considerable inter-strain variation in heat resistance, with D-values ranging from 397.83 to 689 s at 55 °C, 11.35–260.95 s at 60 °C and 1.12 to 6.81 at 65 °C. Likewise, z-values ranged from 2.95 to 5.44 °C. One strain demonstrated a significantly higher thermal tolerance, even though it had been isolated from a meal feed. However, overall the strains investigated do not appear to be that much more heat resistant than Salmonella previously studied. The second part of this study involved assessing the ability of the five Salmonella strains to survive during storage over a 28-day period in pelleted weaner pig feed treated with 0.3% sodium butyrate. While a mean reduction in the Salmonella count of 0.79 log10 CFU was seen in the treated feed during the storage period, a reduction (albeit only 0.49 log10 CFU) was also observed in the control feed. Although there was no overall effect of treatment, sodium butyrate resulted in reductions in Salmonella counts of 0.75 and 0.22 log10 CFU at days 14 and 24 of feed storage, respectively but at the end of the 28-day storage period counts were 0.25 log10 CFU higher in the treated feed. Therefore, the sodium butyrate used appears unsuitable as an agent for feed treatment perhaps due to the protective coating on the particular feed additive used. Overall, the results of this study enhance knowledge about the behaviour and survival characteristics of monophasic S. Typhimurium 4,[5],12:i:- strains in animal feed and may assist the feed industry and pig producers in implementing effective intervention strategies for their control.