• Effect of pre-treatment on the generation of dipeptidyl peptidase-IV- and prolyl endopeptidase-inhibitory hydrolysates from bovine lung

      Lafarga, Tomas; Hayes, Maria; Department of Agriculture, Food and the Marine, Ireland; Teagasc Walsh Fellowship Programme; 11/F/043 (Teagasc (Agriculture and Food Development Authority), Ireland, 25/05/2017)
      The aim of this work was to study the effect of two different pre-treatments, high temperature (100 °C, 5 min) and high pressure (600 MPa, 3 min), on the potential of the enzymes papain, collagenase and Alcalase® to generate bioactive hydrolysates containing dipeptidyl peptidase-IV- (DPP-IV; EC and prolyl endopeptidase- (PEP; EC inhibitory peptides from bovine lung. Both pre-treatments resulted in an increase in the degree of hydrolysis over a 24 h period (P < 0.001) and significantly increased the DPP-IV- and PEP-inhibitory activities of the generated hydrolysates (P < 0.001). Generated hydrolysates included an Alcalase hydrolysate of pressure-treated bovine lung, which was the most active, and showed DPP-IV and PEP half-maximal inhibitory concentration (IC50) values of 1.43 ± 0.06 and 3.62 ± 0.07 mg/ mL, respectively. The major peptides contained in this hydrolysate were determined by liquid chromatography-tandem mass spectrometry, and results demonstrated that bovine lung is a good substrate for the release of bioactive peptides when proper pre-treatment and enzymatic treatment are applied.
    • Generation of Bioactive Hydrolysates and Peptides from Bovine Hemoglobin with In Vitro Renin, Angiotensin-I-Converting Enzyme and Dipeptidyl Peptidase-IV Inhibitory Activities

      Lafarga, Tomas; Rai, Dilip K.; O'Connor, Paula M.; Hayes, Maria; Teagasc Walsh Fellowship Programme; Department of Agriculture, Food and the Marine; 11/F/043 (Wiley, 02/03/2016)
      Bovine hemoglobin was selected for use in the generation of bioactive hydrolysates with potential for use as functional food ingredients for prevention of disorders such as hypertension, obesity and diabetes. Bovine hemoglobin was isolated and hydrolyzed with papain, which was selected using in silico analysis. The generated hydrolysate was enriched by ultrafiltration and further purified by high performance liquid chromatography. A number of peptides were identified using de novo peptide sequencing and these peptides were chemically synthesized to confirm their bioactivity in vitro. Three multifunctional peptides with both, ACE-I and renin-inhibitory properties and one peptide with ACE-I-inhibiting properties were identified. These included the di-peptide HR with ACE-I and renin IC50 values of 0.19 and 7.09 mM, respectively. The generated papain hydrolysate of bovine hemoglobin not only inhibited the enzymes ACE-I and renin but also the enzyme DPP-IV, which has been linked to type-2 diabetes.