• Genome-Wide Profiling of Enterotoxigenic Staphylococcus aureus Strains Used for the Production of Naturally Contaminated Cheeses

      Macori, Guerrino; Bellio, Alberto; Bianchi, Daniela Manila; Chiesa, Francesco; Gallina, Silvia; Romano, Angelo; Zuccon, Fabio; Cabrera-Rubio, Raúl; Cauquil, Alexandra; Merda, Déborah; et al. (MDPI AG, 2019-12-27)
      Staphylococcus aureus is a major human pathogen and an important cause of livestock infections. More than 20 staphylococcal enterotoxins with emetic activity can be produced by specific strains responsible for staphylococcal food poisoning, one of the most common food-borne diseases. Whole genome sequencing provides a comprehensive view of the genome structure and gene content that have largely been applied in outbreak investigations and genomic comparisons. In this study, six enterotoxigenic S. aureus strains were characterised using a combination of molecular, phenotypical and computational methods. The genomes were analysed for the presence of virulence factors (VFs), where we identified 110 genes and classified them into five categories: adherence (n = 31), exoenzymes (n = 28), genes involved in host immune system evasion (n = 7); iron uptake regulatory system (n = 8); secretion machinery factors and toxins’ genes (n = 36), and 39 genes coding for transcriptional regulators related to staphylococcal VFs. Each group of VFs revealed correlations among the six enterotoxigenic strains, and further analysis revealed their accessory genomic content, including mobile genetic elements. The plasmids pLUH02 and pSK67 were detected in the strain ProNaCC1 and ProNaCC7, respectively, carrying out the genes sed, ser, and selj. The genes carried out by prophages were detected in the strain ProNaCC2 (see), ProNaCC4, and ProNaCC7 (both positive for sea). The strain ProNaCC5 resulted positive for the genes seg, sei, sem, sen, seo grouped in an exotoxin gene cluster, and the strain ProNaCC6 resulted positive for seh, a transposon-associated gene. The six strains were used for the production of naturally contaminated cheeses which were tested with the European Screening Method for staphylococcal enterotoxins. The results obtained from the analysis of toxins produced in cheese, combined with the genomic features represent a portrait of the strains that can be used for the production of staphylococcal enterotoxin-positive cheese as reference material.
    • Meta-analysis of cheese microbiomes highlights contributions to multiple aspects of quality

      Walsh, Aaron M.; Macori, Guerrino; Kilcawley, Kieran N.; Cotter, Paul D.; Science Foundation Ireland; European Commission; Department of Agriculture, Food and Marine; SFI/12/RC/2273P1; SFI/12/RC/2273P2; 818368; et al. (Springer Science and Business Media LLC, 2020-08-13)
      A detailed understanding of the cheese microbiome is key to the optimization of flavour, appearance, quality and safety. Accordingly, we conducted a high-resolution meta-analysis of cheese microbiomes and corresponding volatilomes. Using 77 new samples from 55 artisanal cheeses from 27 Irish producers combined with 107 publicly available cheese metagenomes, we recovered 328 metagenome-assembled genomes, including 47 putative new species that could influence taste or colour through the secretion of volatiles or biosynthesis of pigments. Additionally, from a subset of samples, we found that differences in the abundances of strains corresponded with levels of volatiles. Genes encoding bacteriocins and other antimicrobials, such as pseudoalterin, were common, potentially contributing to the control of undesirable microorganisms. Although antibiotic-resistance genes were detected, evidence suggested they are not of major concern with respect to dissemination to other microbiomes. Phages, a potential cause of fermentation failure, were abundant and evidence for phage-mediated gene transfer was detected. The anti-phage defence mechanism CRISPR was widespread and analysis thereof, and of anti-CRISPR proteins, revealed a complex interaction between phages and bacteria. Overall, our results provide new and substantial technological and ecological insights into the cheese microbiome that can be applied to further improve cheese production.
    • Whole-Genome Shotgun Sequence of Salmonella bongori, First Isolated in Northwestern Italy

      Romano, Angelo; Bellio, Alberto; Macori, Guerrino; Cotter, Paul D.; Manila Bianchi, Daniela; Gallina, Silvia; Decastelli, Lucia (American Society for Microbiology, 06/07/2017)
      This study describes the whole-genome shotgun sequence of Salmonella bongori 48:z35:–, originally isolated from a 1-year-old symptomatic patient in northwest Italy, a typically nonendemic area. The draft genome sequence contained 4.56 Mbp and the G+C content was 51.27%.