• Chronic intermittent hypoxia disrupts cardiorespiratory homeostasis and gut microbiota composition in adult male guinea-pigs

      Lucking, Eric F.; O'Connor, Karen M.; Strain, Conall R.; Fouhy, Fiona; Bastiaanssen, Thomaz F.S.; Burns, David P.; Golubeva, Anna V.; STANTON, CATHERINE; Clarke, Gerard; Cryan, John F.; et al. (Elsevier, 2018-11-13)
      Background: Carotid body (peripheral oxygen sensor) sensitisation is pivotal in the development of chronic intermittent hypoxia (CIH)-induced hypertension. We sought to determine if exposure to CIH, modelling human sleep apnoea, adversely affects cardiorespiratory control in guinea-pigs, a species with hypoxia-insensitive carotid bodies. We reasoned that CIH-induced disruption of gut microbiota would evoke cardiorespiratory morbidity. Methods: Adult male guinea-pigs were exposed to CIH (6.5% O2 at nadir, 6 cycles.hour−1) for 8 h.day−1 for 12 consecutive days. Findings: CIH-exposed animals established reduced faecal microbiota species richness, with increased relative abundance of Bacteroidetes and reduced relative abundance of Firmicutes bacteria. Urinary corticosterone and noradrenaline levels were unchanged in CIH-exposed animals, but brainstem noradrenaline concentrations were lower compared with sham. Baseline ventilation was equivalent in CIH-exposed and sham animals; however, respiratory timing variability, sigh frequency and ventilation during hypoxic breathing were all lower in CIH-exposed animals. Baseline arterial blood pressure was unaffected by exposure to CIH, but β-adrenoceptor-dependent tachycardia and blunted bradycardia during phenylephrine-induced pressor responses was evident compared with sham controls. Interpretation: Increased carotid body chemo-afferent signalling appears obligatory for the development of CIH-induced hypertension and elevated chemoreflex control of breathing commonly reported in mammals, with hypoxia-sensitive carotid bodies. However, we reveal that exposure to modest CIH alters gut microbiota richness and composition, brainstem neurochemistry, and autonomic control of heart rate, independent of carotid body sensitisation, suggesting modulation of breathing and autonomic homeostasis via the microbiota-gut-brainstem axis. The findings have relevance to human sleep-disordered breathing.
    • Manipulation of gut microbiota blunts the ventilatory response to hypercapnia in adult rats

      O'Connor, Karen M.; Lucking, Eric F.; Golubeva, Anna V.; Strain, Conall R.; Fouhy, Fiona; Cenit, María C.; Dhaliwal, Pardeep; Bastiaanssen, Thomaz F.S.; Burns, David P.; STANTON, CATHERINE; et al. (Elsevier, 2019-03-18)
      Background: It is increasingly evident that perturbations to the diversity and composition of the gut microbiota have significant consequences for the regulation of integrative physiological systems. There is growing interest in the potential contribution of microbiota-gut-brain signalling to cardiorespiratory control in health and disease. Methods: In adult male rats, we sought to determine the cardiorespiratory effects of manipulation of the gut microbiota following a 4-week administration of a cocktail of antibiotics. We subsequently explored the effects of administration of faecal microbiota from pooled control (vehicle) rat faeces, given by gavage to vehicle- and antibiotic-treated rats. Findings: Antibiotic intervention depressed the ventilatory response to hypercapnic stress in conscious animals, owing to a reduction in the respiratory frequency response to carbon dioxide. Baseline frequency, respiratory timing variability, and the expression of apnoeas and sighs were normal. Microbiota-depleted rats had decreased systolic blood pressure. Faecal microbiota transfer to vehicle- and antibiotic-treated animals also disrupted the gut microbiota composition, associated with depressed ventilatory responsiveness to hypercapnia. Chronic antibiotic intervention or faecal microbiota transfer both caused significant disruptions to brainstem monoamine neurochemistry, with increased homovanillic acid:dopamine ratio indicative of increased dopamine turnover, which correlated with the abundance of several bacteria of six different phyla. Interpretation: Chronic antibiotic administration and faecal microbiota transfer disrupt gut microbiota, brainstem monoamine concentrations and the ventilatory response to hypercapnia. We suggest that aberrant microbiota-gut-brain axis signalling has a modulatory influence on respiratory behaviour during hypercapnic stress.
    • Prebiotic administration modulates gut microbiota and faecal short-chain fatty acid concentrations but does not prevent chronic intermittent hypoxia-induced apnoea and hypertension in adult rats

      O'Connor, Karen M.; Lucking, Eric F.; Bastiaanssen, Thomaz F.S.; Peterson, Veronica L.; Crispie, Fiona; Cotter, Paul D.; Clarke, Gerard; Cryan, John F.; O'Halloran, Ken D.; Science Foundation Ireland (Science Direct, 2020-08-30)
      Background Evidence is accruing to suggest that microbiota-gut-brain signalling plays a regulatory role in cardiorespiratory physiology. Chronic intermittent hypoxia (CIH), modelling human sleep apnoea, affects gut microbiota composition and elicits cardiorespiratory morbidity. We investigated if treatment with prebiotics ameliorates cardiorespiratory dysfunction in CIH-exposed rats. Methods Adult male rats were exposed to CIH (96 cycles/day, 6.0% O2 at nadir) for 14 consecutive days with and without prebiotic supplementation (fructo- and galacto-oligosaccharides) beginning two weeks prior to gas exposures. Findings CIH increased apnoea index and caused hypertension. CIH exposure had modest effects on the gut microbiota, decreasing the relative abundance of Lactobacilli species, but had no effect on microbial functional characteristics. Faecal short-chain fatty acid (SCFA) concentrations, plasma and brainstem pro-inflammatory cytokine concentrations and brainstem neurochemistry were unaffected by exposure to CIH. Prebiotic administration modulated gut microbiota composition and diversity, altering gut-metabolic (GMMs) and gut-brain (GBMs) modules and increased faecal acetic and propionic acid concentrations, but did not prevent adverse CIH-induced cardiorespiratory phenotypes. Interpretation CIH-induced cardiorespiratory dysfunction is not dependant upon changes in microbial functional characteristics and decreased faecal SCFA concentrations. Prebiotic-related modulation of microbial function and resultant increases in faecal SCFAs were not sufficient to prevent CIH-induced apnoea and hypertension in our model. Our results do not exclude the potential for microbiota-gut-brain axis involvement in OSA-related cardiorespiratory morbidity, but they demonstrate that in a relatively mild model of CIH, sufficient to evoke classic cardiorespiratory dysfunction, such changes are not obligatory for the development of morbidity, but may become relevant in the elaboration and maintenance of cardiorespiratory morbidity with progressive disease. Funding Department of Physiology and APC Microbiome Ireland, University College Cork, Ireland. APC Microbiome Ireland is funded by Science Foundation Ireland, through the Government's National Development Plan.