• Influence of feeding systems on the eating quality of beef

      Troy, Declan J.; Murray, Brendan; O'Sullivan, Aidan; Mooney, Teresa; Moloney, Aidan P; Kerry, Joseph (Teagasc, 2002-10)
      The objective was to determine pre-slaughter factors which may enhance the eating quality of beef and to assist the Irish beef production chain to exploit these factors to produce beef of higher quality and increased consumer acceptability. The effects of pre-slaughter growth rate, high energy diets, feed type and age at slaughter on beef quality were examined.
    • Development of enterococci and production of tyramine during the manufacture and ripening of Cheddar cheese

      Rea, Mary C.; Franz, C.M.A.P.; Holzapfel, W.H.; Colgan, T.M. (Teagasc (Agriculture and Food Development Authority), Ireland, 2004)
      The effect of six strains of enterococci (three strains of Enterococcus faecalis, and one strain each of Ec. faecium, Ec. durans and Ec. casseliflavus) on flavour development and tyramine production in Cheddar cheese during manufacture and ripening was studied in two trials. No strain produced gelatinase or haemolysin and all of them grew well during manufacture reaching 107 colony forming units (cfu)/g in 6 h, after which they remained more or less constant during at least 48 weeks of ripening. There was no relationship between tyramine production in a broth containing tyrosine and tyramine production in the cheese. All strains, except Ec. casseliflavus, produced tyramine in the cheese, with the greatest concentration (162 mg/kg) being produced by Ec. durans after 9 months ripening at 8 ºC. There was no statistically significant difference (P > 0.05) between the flavour of the control cheese and any cheese containing an enterococcus. Nevertheless, cheese made with Ec. faecium E-24 received the best score in each trial at both time points. No off-flavours were found. Regarding proteolysis, only Ec. faecalis E-140 showed significant (P < 0.05) increases in both phosphotungstic acid and pH 4.6 soluble N. It is concluded that enterococci have little effect on the flavour of Cheddar cheese.
    • Molecular Characterisation of Bacteriophage K Towards Applications for the Biocontrol of Pathogenic Staphylococci

      O’Flaherty, Sarah; Flynn, Jimmy; Coffey, Aidan; Fitzgerald, Gerald; Meaney, William J; Ross, R Paul (Teagasc, 2006-01-01)
      The aim of this work was to characterise staphylococcal bacteriophage (a bacterial virus) and to assess their potential as therapeutic agents against pathogenic strains of Staphylococcus aureus, particularly mastitis-causing strains. The project included the use of two newly isolated phage CS1 and DW2, and an existing polyvalent phage. The new phage were isolated from the farmyard and characterised by electron microscopy and restriction analysis. Both phage were shown to belong to the Siphoviridae family and were lytic for representatives of all three clonal groups of Irish mastitis-associated staphylococci. A cocktail of three phage (CS1, DW2 and K) at 108 (plaque forming units) PFU/ml was infused into cows teats in animal trials. The lack of an increase in somatic cell counts in milks indicated strongly that the phage did not irritate the animal. In addition, the most potent phage used in this study, phage K, was further studied by genome sequencing, which revealed a linear DNA genome of 127,395 base pairs, which encodes 118 putative ORFs (open reading frames).
    • Relatedness between the two-component lantibiotics lacticin 3147 and staphylococcin C55 based on structure, genetics and biological activity

      O'Connor, Eileen B; Cotter, Paul D.; O'Connor, Paula M.; O'Sullivan, Orla; Tagg, John R; Ross, R Paul; Hill, Colin (Biomed Central, 2007-04-02)
      Background: Two component lantibiotics, such as the plasmid-encoded lacticin 3147 produced by Lactococcus lactis DPC3147 and staphylococcin C55 produced by Staphylococcus aureus C55, represent an emerging subgroup of bacteriocins. These two bacteriocins are particularly closely related, exhibiting 86% (LtnA1 and C55α) and 55% (LtnA2 and C55β) identity in their component peptides. The aim of this study was to investigate, for the first time for any two component bacteriocins, the significance of the relatedness between these two systems. Results: So close is this relatedness that the hybrid peptide pairs LtnA1:C55β and C55α:LtnA2 were found to have activities in the single nanomolar range, comparing well with the native pairings. To determine whether this flexibility extended to the associated post-translational modification/processing machinery, the staphylococcin C55 structural genes were directly substituted for their lacticin 3147 counterparts in the ltn operon on the large conjugative lactococcal plasmid pMRC01. It was established that the lacticin LtnA1 post-translational and processing machinery could produce functionally active C55α, but not C55β. In order to investigate in closer detail the significance of the differences between LtnA1 and C55α, three residues in LtnA1 were replaced with the equivalent residues in C55α. Surprisingly, one such mutant LtnA1-Leu21Ala was not produced. This may be significant given the positioning of this residue in a putative lipid II binding loop. Conclusion: It is apparent, despite sharing striking similarities in terms of structure and activity, that these two complex bacteriocins display some highly dedicated features particular to either system.
    • Adding value to milk by increasing its protein and CLA contents

      Murphy, J.J.; Stanton, Catherine; O'Donovan, Michael; Kavanagh, S.; Maher, J.; Patton, Joe; Mohammed, Riaz (Teagasc, 2008-08-01)
      The mid-summer milk protein study was undertaken on 34 commercial dairy farms in 2005 to evaluate the influence of dietary and management variables on milk protein content in mid-season. Data on grass composition, genetic merit of the herds and milk protein content were collected and analysed by multiple regression. Both calving date and genetic merit for milk protein content were significantly associated with milk protein content and were used as adjustment factors when evaluating the association between measures of grass quality and milk protein content. Milk protein content was associated with grass OMD (P = 0.04) and NDF content (P = 0.02) but not with CP content (P = 0.80). It is concluded that herds calving earlier, with a greater genetic merit for milk protein content and consuming better quality pasture would have greater milk protein contents in mid-season.
    • Listeriolysin S, a Novel Peptide Haemolysin Associated with a Subset of Lineage I Listeria monocytogenes

      Cotter, Paul D.; Draper, Lorraine A.; Lawton, Elaine M.; Daly, Karen M.; Groeger, David S.; Casey, Patrick G.; Ross, R. Paul; Hill, Colin (PLOS, 2008-09-12)
      Streptolysin S (SLS) is a bacteriocin-like haemolytic and cytotoxic virulence factor that plays a key role in the virulence of Group A Streptococcus (GAS), the causative agent of pharyngitis, impetigo, necrotizing fasciitis and streptococcal toxic shock syndrome. Although it has long been thought that SLS and related peptides are produced by GAS and related streptococci only, there is evidence to suggest that a number of the most notorious Gram-positive pathogenic bacteria, including Listeria monocytogenes, Clostridium botulinum and Staphylococcus aureus, produce related peptides. The distribution of the L. monocytogenes cluster is particularly noteworthy in that it is found exclusively among a subset of lineage I strains; i.e., those responsible for the majority of outbreaks of listeriosis. Expression of these genes results in the production of a haemolytic and cytotoxic factor, designated Listeriolysin S, which contributes to virulence of the pathogen as assessed by murine- and human polymorphonuclear neutrophil–based studies. Thus, in the process of establishing the existence of an extended family of SLS-like modified virulence peptides (MVPs), the genetic basis for the enhanced virulence of a proportion of lineage I L. monocytogenes may have been revealed.
    • Comparative genomics of lactic acid bacteria reveals a niche-specific gene set

      O'Sullivan, Orla; O'Callaghan, John; Sangrador-Vegas, Amaia; McAuliffe, Olivia; Slattery, Lydia; Kaleta, Pawel; Callanan, Michael J.; Fitzgerald, Gerald F; Ross, R Paul; Beresford, Tom (Biomed Central, 2009-03-05)
      Background: The recently sequenced genome of Lactobacillus helveticus DPC4571 1 revealed a dairy organism with significant homology (75% of genes are homologous) to a probiotic bacteria Lb. acidophilus NCFM 2. This led us to hypothesise that a group of genes could be determined which could define an organism's niche. Results: Taking 11 fully sequenced lactic acid bacteria (LAB) as our target, (3 dairy LAB, 5 gut LAB and 3 multi-niche LAB), we demonstrated that the presence or absence of certain genes involved in sugar metabolism, the proteolytic system, and restriction modification enzymes were pivotal in suggesting the niche of a strain. We identified 9 niche specific genes, of which 6 are dairy specific and 3 are gut specific. The dairy specific genes identified in Lactobacillus helveticus DPC4571 were lhv_1161 and lhv_1171, encoding components of the proteolytic system, lhv_1031 lhv_1152, lhv_1978 and lhv_0028 encoding restriction endonuclease genes, while bile salt hydrolase genes lba_0892 and lba_1078, and the sugar metabolism gene lba_1689 from Lb. acidophilus NCFM were identified as gut specific genes. Conclusion: Comparative analysis revealed that if an organism had homologs to the dairy specific geneset, it probably came from a dairy environment, whilst if it had homologs to gut specific genes, it was highly likely to be of intestinal origin. We propose that this "barcode" of 9 genes will be a useful initial guide to researchers in the LAB field to indicate an organism's ability to occupy a specific niche.
    • Administration of a live culture of Lactococcus lactis DPC 3147 into the bovine mammary gland stimulates the local host immune response, particularly IL-1β and IL-8 gene expression

      Beecher, Christine; Daly, Mairead; Berry, Donagh P.; Klostermann, Katja; Flynn, James; Meaney, William J; Hill, Colin; McCarthy, Tommie V.; Ross, R Paul; Giblin, Linda (Cambridge University Press: Published for the Institute of Food Research and the Hannah Research Institute, 2009-05-18)
      Mastitis is one of the most costly diseases to the dairy farming industry. Conventional antibiotic therapy is often unsatisfactory for successful treatment of mastitis and alternative treatments are continually under investigation. We have previously demonstrated, in two separate field trials, that a probiotic culture, Lactococcus lactis DPC 3147, was comparable to antibiotic therapy to treat bovine mastitis. To understand the mode of action of this therapeutic, we looked at the detailed immune response of the host to delivery of this live strain directly into the mammary gland of six healthy dairy cows. All animals elicited signs of udder inflammation 7 h post infusion. At this time, clots were visible in the milk of all animals in the investigation. The most pronounced increase in immune gene expression was observed in Interleukin (IL)-1b and IL-8, with highest expression corresponding to peaks in somatic cell count. Infusion with a live culture of a Lc. lactis leads to a rapid and considerable innate immune response.
    • Comparative Analysis of Pyrosequencing and a Phylogenetic Microarray for Exploring Microbial Community Structures in the Human Distal Intestine

      Claesson, Marcus J.; O'Sullivan, Orla; Wang, Qiong; Nikkila, Janne; Marchesi, Julian R.; Smidt, Hauka; de Vos, Willem M.; Ross, R. Paul; O'Toole, Paul W. (PLOS, 2009-08-20)
      Background: Variations in the composition of the human intestinal microbiota are linked to diverse health conditions. Highthroughput molecular technologies have recently elucidated microbial community structure at much higher resolution than was previously possible. Here we compare two such methods, pyrosequencing and a phylogenetic array, and evaluate classifications based on two variable 16S rRNA gene regions. Methods and Findings: Over 1.75 million amplicon sequences were generated from the V4 and V6 regions of 16S rRNA genes in bacterial DNA extracted from four fecal samples of elderly individuals. The phylotype richness, for individual samples, was 1,400–1,800 for V4 reads and 12,500 for V6 reads, and 5,200 unique phylotypes when combining V4 reads from all samples. The RDP-classifier was more efficient for the V4 than for the far less conserved and shorter V6 region, but differences in community structure also affected efficiency. Even when analyzing only 20% of the reads, the majority of the microbial diversity was captured in two samples tested. DNA from the four samples was hybridized against the Human Intestinal Tract (HIT) Chip, a phylogenetic microarray for community profiling. Comparison of clustering of genus counts from pyrosequencing and HITChip data revealed highly similar profiles. Furthermore, correlations of sequence abundance and hybridization signal intensities were very high for lower-order ranks, but lower at family-level, which was probably due to ambiguous taxonomic groupings. Conclusions: The RDP-classifier consistently assigned most V4 sequences from human intestinal samples down to genuslevel with good accuracy and speed. This is the deepest sequencing of single gastrointestinal samples reported to date, but microbial richness levels have still not leveled out. A majority of these diversities can also be captured with five times lower sampling-depth. HITChip hybridizations and resulting community profiles correlate well with pyrosequencing-based compositions, especially for lower-order ranks, indicating high robustness of both approaches. However, incompatible grouping schemes make exact comparison difficult.
    • Synthesis of trypsin-resistant variants of the Listeria-active bacteriocin salivaricin P

      O'Shea, Eileen F.; O'Connor, Paula M.; Cotter, Paul D.; Ross, R Paul; Hill, Colin (American Society for Microbiology, 2010-06-25)
      Two-component Salivaricin P-like bacteriocins have demonstrated potential as antimicrobials capable of controlling infections in the gastrointestinal tract (GIT). The anti-Listeria activity of salivaricin P is optimal when the individual peptides, Sln1 and Sln2, are added in succession in a 1:1 ratio. However, as degradation by digestive proteases may compromise the functionality of these peptides within the GIT we investigated the potential to create salivaricin variants with enhanced resistance to the intestinal protease, trypsin. A total of 11 variants of the salivaricin P components were generated in which conservative modifications at the trypsin-specific cleavage sites were explored in order to protect the peptides from trypsin degradation while maintaining their potent antimicrobial activity. Analysis of these variants revealed that eight were resistant to trypsin digestion while retaining antimicrobial activity. Combining the complementary trypsin resistant variants Sln1-5 and Sln2-3 resulted in a MIC50 of 300 nM against Listeria monocytogenes, a 3.75-fold reduction in activity compared to wild-type salivaricin P. This study demonstrates the potential of engineering bacteriocins variants which are resistant to specific protease action but which retain significant antimicrobial activity.
    • Association of bovine leptin polymorphisms with energy output and energy storage traits in progeny tested Holstein-Friesian dairy cattle sires

      Giblin, Linda; Butler, Stephen T.; Kearney, Breda M.; Waters, Sinead M.; Callanan, Michael J.; Berry, Donagh P. (Biomed Central, 2010-07-29)
      Background: Leptin modulates appetite, energy expenditure and the reproductive axis by signalling via its receptor the status of body energy stores to the brain. The present study aimed to quantify the associations between 10 novel and known single nucleotide polymorphisms in genes coding for leptin and leptin receptor with performance traits in 848 Holstein-Friesian sires, estimated from performance of up to 43,117 daughter-parity records per sire. Results: All single nucleotide polymorphisms were segregating in this sample population and none deviated (P > 0.05) from Hardy-Weinberg equilibrium. Complete linkage disequilibrium existed between the novel polymorphism LEP-1609, and the previously identified polymorphisms LEP-1457 and LEP-580. LEP-2470 associated (P < 0.05) with milk protein concentration and calf perinatal mortality. It had a tendency to associate with milk yield (P < 0.1). The G allele of LEP-1238 was associated (P < 0.05) with reduced milk fat concentration, reduced milk protein concentration, longer gestation length and tended to associate (P < 0.1) with an increase in calving difficulty, calf perinatal mortality and somatic cells in the milk. LEP-963 exhibited an association (P < 0.05) with milk fat concentration, milk protein concentration, calving difficulty and gestation length. It also tended to associate with milk yield (P < 0.1). The R25C SNP associated (P < 0.05) with milk fat concentration, milk protein concentration, calving difficulty and length of gestation. The T allele of the Y7F SNP significantly associated with reduced angularity (P < 0.01) and reduced milk protein yield (P < 0.05). There was also a tendency (P < 0.1) for Y7F to associate with increased body condition score, reduced milk yield and shorter gestation (P < 0.1). A80V associated with reduced survival in the herd (P < 0.05). Conclusions Several leptin polymorphisms (LEP-2470, LEP-1238, LEP-963, Y7F and R25C) associated with the energetically expensive process of lactogenesis. Only SNP Y7F associated with energy storage. Associations were also observed between leptin polymorphisms and calving difficulty, gestation length and calf perinatal mortality. The lack of an association between the leptin variants investigated with calving interval in this large data set would question the potential importance of these leptin variants, or indeed leptin, in selection for improved fertility in the Holstein-Friesian dairy cow.
    • Polymorphisms in bovine immune genes and their associations with somatic cell count and milk production in dairy cattle

      Beecher, Christine; Daly, Mairead; Childs, Stuart; Berry, Donagh P.; Magee, David A; McCarthy, Tommie V; Giblin, Linda (Biomed Central, 2010-11-05)
      Background: Mastitis, an inflammation of the mammary gland, is a major source of economic loss on dairy farms. The aim of this study was to quantify the associations between two previously identified polymorphisms in the bovine toll-like receptor 2 (TLR2) and chemokine receptor 1 (CXCR1) genes and mammary health indictor traits in (a) 246 lactating dairy cow contemporaries representing five breeds from one research farm and (b) 848 Holstein-Friesian bulls that represent a large proportion of the Irish dairy germplasm. To expand the study, a further 14 polymorphisms in immune genes were included for association studies in the bull population. Results: TLR4-2021 associated (P < 0.05) with both milk protein and fat percentage in late lactation (P < 0.01) within the cow cohort. No association was observed between this polymorphism and either yield or composition of milk within the bull population. CXCR1-777 significantly associated (P < 0.05) with fat yield in the bull population and tended to associate (P < 0.1) with somatic cell score (SCS) in the cows genotyped. CD14-1908 A allele was found to associate with increased (P < 0.05) milk fat and protein yield and also tended to associate with increased (P < 0.1) milk yield. A SERPINA1 haplotype with superior genetic merit for milk protein yield and milk fat percentage (P < 0.05) was also identified. Conclusion: Of the sixteen polymorphisms in seven immune genes genotyped, just CXCR1-777 tended to associate with SCS, albeit only in the on-farm study. The lack of an association between the polymorphisms with SCS in the Holstein-Friesian data set would question the potential importance of these variants in selection for improved mastitis resistance in the Holstein-Friesian cow.
    • Bovine proteins containing poly-glutamine repeats are often polymorphic and enriched for components of transcriptional regulatory complexes

      Whan, Vicki; Hobbs, Matthew; McWilliam, Sean; Lynn, David J; Lutzow, Ylva S; Khatkar, Mehar; Barendse, William; Raadsma, Herman; Tellam, Ross L (Biomed Central, 2010-11-23)
      Background: About forty human diseases are caused by repeat instability mutations. A distinct subset of these diseases is the result of extreme expansions of polymorphic trinucleotide repeats; typically CAG repeats encoding poly-glutamine (poly-Q) tracts in proteins. Polymorphic repeat length variation is also apparent in human poly-Q encoding genes from normal individuals. As these coding sequence repeats are subject to selection in mammals, it has been suggested that normal variations in some of these typically highly conserved genes are implicated in morphological differences between species and phenotypic variations within species. At present, poly-Q encoding genes in non-human mammalian species are poorly documented, as are their functions and propensities for polymorphic variation. Results: The current investigation identified 178 bovine poly-Q encoding genes (Q ≥ 5) and within this group, 26 genes with orthologs in both human and mouse that did not contain poly-Q repeats. The bovine poly-Q encoding genes typically had ubiquitous expression patterns although there was bias towards expression in epithelia, brain and testes. They were also characterised by unusually large sizes. Analysis of gene ontology terms revealed that the encoded proteins were strongly enriched for functions associated with transcriptional regulation and many contributed to physical interaction networks in the nucleus where they presumably act cooperatively in transcriptional regulatory complexes. In addition, the coding sequence CAG repeats in some bovine genes impacted mRNA splicing thereby generating unusual transcriptional diversity, which in at least one instance was tissue-specific. The poly-Q encoding genes were prioritised using multiple criteria for their likelihood of being polymorphic and then the highest ranking group was experimentally tested for polymorphic variation within a cattle diversity panel. Extensive and meiotically stable variation was identified. Conclusions: Transcriptional diversity can potentially be generated in poly-Q encoding genes by the impact of CAG repeat tracts on mRNA alternative splicing. This effect, combined with the physical interactions of the encoded proteins in large transcriptional regulatory complexes suggests that polymorphic variations of proteins in these complexes have strong potential to affect phenotype.
    • In silico analysis highlights the frequency and diversity of type 1 lantibiotic gene clusters in genome sequenced bacteria

      Marsh, Alan J.; O'Sullivan, Orla; Ross, R Paul; Cotter, Paul D.; Hill, Colin (Biomed Central, 2010-11-30)
      Background: Lantibiotics are lanthionine-containing, post-translationally modified antimicrobial peptides. These peptides have significant, but largely untapped, potential as preservatives and chemotherapeutic agents. Type 1 lantibiotics are those in which lanthionine residues are introduced into the structural peptide (LanA) through the activity of separate lanthionine dehydratase (LanB) and lanthionine synthetase (LanC) enzymes. Here we take advantage of the conserved nature of LanC enzymes to devise an in silico approach to identify potential lantibiotic-encoding gene clusters in genome sequenced bacteria. Results: In total 49 novel type 1 lantibiotic clusters were identified which unexpectedly were associated with species, genera and even phyla of bacteria which have not previously been associated with lantibiotic production. Conclusions: Multiple type 1 lantibiotic gene clusters were identified at a frequency that suggests that these antimicrobials are much more widespread than previously thought. These clusters represent a rich repository which can yield a large number of valuable novel antimicrobials and biosynthetic enzymes.
    • Nutritional intervention during gestation alters growth, body composition and gene expression patterns in skeletal muscle of pig offspring

      McNamara, L.B.; Giblin, Linda; Markham, T.; Stickland, N. C.; Berry, Donagh P.; O'Reilly, James J; Lynch, P Brendan; Kerry, J. P.; Lawlor, Peadar G (Cambridge University Press, 2011-02)
      Variations in maternal nutrition during gestation can influence foetal growth, foetal development and permanently ‘programme’ offspring for postnatal life. The objective of this study was to analyse the effect of increased maternal nutrition during different gestation time windows on offspring growth, carcass quality, meat quality and gene expression in skeletal muscle. A total of 64 sows were assigned to the following feeding treatments: a standard control diet at a feed allocation of 2.3 kg/day throughout gestation, increased feed allowance of 4.6 kg/day from 25 to 50 days of gestation (dg), from 50 to 80 dg and from 25 to 80 dg. At weaning, Light, Medium and Heavy pigs of the same gender, within litter, were selected based on birth weight, individually penned and monitored until slaughter at 130 days post weaning. Carcass and meat quality traits of the semimembranosus (SM) muscle were recorded post mortem. A cross section of the semitendinosus (ST) muscle encompassing the deep and superficial regions were harvested from pigs (n518 per treatment) for RNA extraction and quantification of gene expression by real-time PCR. The results showed that doubling the feed intake from 25 to 50 dg reduced offspring growth, carcass weight, intramuscular fat content and increased drip loss of the SM muscle. Interestingly, protein phosphatase 3 catalytic subunit – a-isoform, which codes for the transcription factor calcineurin, was upregulated in the ST muscle of offspring whose mothers received increased feed allowance from 25 to 50 dg. This may provide an explanation for the previous observed increases in Type IIa muscle fibres of these offspring. Increasing the maternal feed intake from 50 to 80 dg negatively impacted pig growth and carcass weight, but produced leaner male pigs. Extending the increased maternal feed intake from 25 to 80 dg had no effect on offspring over the standard control gestation diet. Although intra-litter variation in pig weight is a problem for pig producers, increased maternal feeding offered no improvement throughout life to the lighter birth weight littermates in our study. Indeed, increased maternal nutrition at the three-gestation time windows selected provided no major benefits to the offspring.
    • Single nucleotide polymorphisms in the insulin-like growth factor 1 (IGF-1) gene are associated with performance in Holstein-Friesian dairy cattle

      Mullen, Michael Paul; Berry, Donagh P.; Howard, Dawn J.; Diskin, Michael G.; Lynch, Ciaran O.; Giblin, Linda; Kenny, David A.; Magee, David A; Meade, Kieran G; Waters, Sinead M. (Frontiers Media SA, 2011-02-16)
      Insulin-like growth factor 1 (IGF-1) has been shown to be associated with fertility, growth, and development in cattle. The aim of this study was to (1) identify novel single nucleotide polymorphisms (SNPs) in the bovine IGF-1 gene and alongside previously identified SNPs (2) determine their association with traits of economic importance in Holstein-Friesian dairy cattle. Nine novel SNPs were identified across a panel of 22 beef and dairy cattle by sequence analysis of the 5′ promoter, intronic, and 3′ regulatory regions, encompassing ∼5 kb of IGF-1. Genotyping and associations with daughter performance for milk production, fertility, survival, and measures of body size were undertaken on 848 Holstein-Friesian AI sires. Using multiple regression analysis nominal associations (P < 0.05) were identified between six SNPs (four novel and two previously identified) and milk composition, survival, body condition score, and body size. The C allele of AF017143 a previously published SNP (C-512T) in the promoter region of IGF-1 predicted to introduce binding sites for transcription factors HSF1 and ZNF217 was associated (P < 0.05) with increased cow carcass weight (i.e., an indicator of mature cow size). Novel SNPs were identified in the 3′ region of IGF-1 were associated (P < 0.05) with functional survival and chest width. The remaining four SNPs, all located within introns of IGF-1 were associated (P < 0.05) with milk protein yield, milk fat yield, milk fat concentration, somatic cell score, carcass conformation, and carcass fat. Results of this study further demonstrate the multifaceted influences of IGF-1 on milk production and growth related traits in cattle.
    • Myosin-cross-reactive antigen (MCRA) protein from Bifidobacterium breve is a FAD-dependent fatty acid hydratase which has a function in stress protection

      Rosberg-Cody, Eva; Liavonchanka, Alena; Gobel, Cornelia; Ross, R Paul; O'Sullivan, Orla; Fitzgerald, Gerald F; Feussner, Ivo; Stanton, Catherine (Biomed Central, 2011-02-17)
      Background The aim of this study was to determine the catalytic activity and physiological role of myosin-cross-reactive antigen (MCRA) from Bifidobacterium breve NCIMB 702258. MCRA from B. breve NCIMB 702258 was cloned, sequenced and expressed in heterologous hosts (Lactococcus and Corynebacterium) and the recombinant proteins assessed for enzymatic activity against fatty acid substrates. Results MCRA catalysed the conversion of palmitoleic, oleic and linoleic acids to the corresponding 10-hydroxy fatty acids, but shorter chain fatty acids were not used as substrates, while the presence of trans-double bonds and double bonds beyond the position C12 abolished hydratase activity. The hydroxy fatty acids produced were not metabolised further. We also found that heterologous Lactococcus and Corynebacterium expressing MCRA accumulated increasing amounts of 10-HOA and 10-HOE in the culture medium. Furthermore, the heterologous cultures exhibited less sensitivity to heat and solvent stresses compared to corresponding controls. Conclusions MCRA protein in B. breve can be classified as a FAD-containing double bond hydratase, within the carbon-oxygen lyase family, which may be catalysing the first step in conjugated linoleic acid (CLA) production, and this protein has an additional function in bacterial stress protection.
    • Host Specific Diversity in Lactobacillus johnsonii as Evidenced by a Major Chromosomal Inversion and Phage Resistance Mechanisms

      Guinane, Caitriona M.; Kent, Robert M.; Norberg, Sarah; Hill, Colin; Fitzgerald, Gerald F.; Stanton, Catherine; Ross, R Paul (PLOS, 2011-04-20)
      Genetic diversity and genomic rearrangements are a driving force in bacterial evolution and niche adaptation. We sequenced and annotated the genome of Lactobacillus johnsonii DPC6026, a strain isolated from the porcine intestinal tract. Although the genome of DPC6026 is similar in size (1.97mbp) and GC content (34.8%) to the sequenced human isolate L. johnsonii NCC 533, a large symmetrical inversion of approximately 750 kb differentiated the two strains. Comparative analysis among 12 other strains of L. johnsonii including 8 porcine, 3 human and 1 poultry isolate indicated that the genome architecture found in DPC6026 is more common within the species than that of NCC 533. Furthermore a number of unique features were annotated in DPC6026, some of which are likely to have been acquired by horizontal gene transfer (HGT) and contribute to protection against phage infection. A putative type III restriction-modification system was identified, as were novel Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) elements. Interestingly, these particular elements are not widely distributed among L. johnsonii strains. Taken together these data suggest intra-species genomic rearrangements and significant genetic diversity within the L. johnsonii species and indicate towards a host-specific divergence of L. johnsonii strains with respect to genome inversion and phage exposure.
    • Effects of lipid-encapsulated conjugated linoleic acid supplementation on milk production, bioenergetic status and indicators of reproductive performance in lactating dairy cows

      Hutchinson, Ian A.; de Veth, Michael J.; Stanton, Catherine; Dewhurst, Richard J.; Lonergan, P.; Evans, A.C.O.; Butler, Stephen T. (Cambridge University Press: Published for the Institute of Food Research and the Hannah Research Institute, 2011-07)
      Conjugated linoleic acid (CLA) reduces mammary milk fat synthesis in a dose-dependent manner. Our objective was to determine the effects of lipid-encapsulated CLA (LE-CLA) supplementation on milk production, reproductive performance and metabolic responses in lactating dairy cows fed a grass silage-based diet. Seventy-two Holstein-Friesian cows (32 primiparous and 40 multiparous) were used in a completely randomized block design. Cows received either 80 g of LE-CLA daily or 60 g of calcium salts of palm fatty acids daily (control) from parturition until 60 days in milk. LE-CLA contained a 50:50 mix of cis-9,trans-11 CLA and trans-10,cis-12 CLA, resulting in a daily intake of 6 g of each isomer. Milk production and dry matter intake were recorded daily, and blood samples were collected 3-times a week. Blood samples were analysed for circulating concentrations of glucose, non-esterified fatty acids (NEFA), β-hydroxybutyrate (BHBA), insulin and insulin-like growth factor-I (IGF-I). Progesterone was measured in blood samples collected after the first post-partum insemination. Ovarian ultrasound examinations commenced at 8–10 d post partum and were carried out 3-times a week until first ovulation. LE-CLA treatment resulted in decreased milk fat concentration, with consequent improvements in energy balance and body condition score (BCS). The peak concentration of NEFA in blood was reduced by LE-CLA, but circulating concentrations of insulin, glucose, IGF-I, BHBA and progesterone were not affected. There was no effect of LE-CLA supplementation on the post-partum interval to first ovulation. Services per conception tended to be reduced. The reduction in milk energy output and improvement in energy status and BCS in LE-CLA-supplemented cows provides a strong rationale for further studies with greater cow numbers to test effects on reproductive performance.
    • Carbohydrate catabolic flexibility in the mammalian intestinal commensal Lactobacillus ruminis revealed by fermentation studies aligned to genome annotations

      O’Donnell, Michelle M.; Forde, Brian M; Neville, B; Ross, R Paul; O’Toole, Paul W. (Biomed Central, 2011-08-30)
      Background: Lactobacillus ruminis is a poorly characterized member of the Lactobacillus salivarius clade that is part of the intestinal microbiota of pigs, humans and other mammals. Its variable abundance in human and animals may be linked to historical changes over time and geographical differences in dietary intake of complex carbohydrates. Results: In this study, we investigated the ability of nine L. ruminis strains of human and bovine origin to utilize fifty carbohydrates including simple sugars, oligosaccharides, and prebiotic polysaccharides. The growth patterns were compared with metabolic pathways predicted by annotation of a high quality draft genome sequence of ATCC 25644 (human isolate) and the complete genome of ATCC 27782 (bovine isolate). All of the strains tested utilized prebiotics including fructooligosaccharides (FOS), soybean-oligosaccharides (SOS) and 1,3:1,4-β-D-gluco-oligosaccharides to varying degrees. Six strains isolated from humans utilized FOS-enriched inulin, as well as FOS. In contrast, three strains isolated from cows grew poorly in FOS-supplemented medium. In general, carbohydrate utilisation patterns were strain-dependent and also varied depending on the degree of polymerisation or complexity of structure. Six putative operons were identified in the genome of the human isolate ATCC 25644 for the transport and utilisation of the prebiotics FOS, galacto-oligosaccharides (GOS), SOS, and 1,3:1,4-β-D-Gluco-oligosaccharides. One of these comprised a novel FOS utilisation operon with predicted capacity to degrade chicory-derived FOS. However, only three of these operons were identified in the ATCC 27782 genome that might account for the utilisation of only SOS and 1,3:1,4-β-D-Gluco-oligosaccharides. Conclusions: This study has provided definitive genome-based evidence to support the fermentation patterns of nine strains of Lactobacillus ruminis, and has linked it to gene distribution patterns in strains from different sources. Furthermore, the study has identified prebiotic carbohydrates with the potential to promote L. ruminis growth in vivo.