• Bioaccessibility and Cellular Uptake of β-Carotene Encapsulated in Model O/W Emulsions: Influence of Initial Droplet Size and Emulsifiers

      Lu, Wei; Kelly, Alan; Miao, Song; China Scholarship Council; National Natural Science Foundation of China; 201508300001; 31628016 (MDPI AG, 2017-09-20)
      The effects of the initial emulsion structure (droplet size and emulsifier) on the properties of β-carotene-loaded emulsions and the bioavailability of β-carotene after passing through simulated gastrointestinal tract (GIT) digestion were investigated. Exposure to GIT significantly changed the droplet size, surface charge and composition of all emulsions, and these changes were dependent on their initial droplet size and the emulsifiers used. Whey protein isolate (WPI)-stabilized emulsion showed the highest β-carotene bioaccessibility, while sodium caseinate (SCN)-stabilized emulsion showed the highest cellular uptake of β-carotene. The bioavailability of emulsion-encapsulated β-carotene based on the results of bioaccessibility and cellular uptake showed the same order with the results of cellular uptake being SCN > TW80 > WPI. An inconsistency between the results of bioaccessibility and bioavailability was observed, indicating that the cellular uptake assay is necessary for a reliable evaluation of the bioavailability of emulsion-encapsulated compounds. The findings in this study contribute to a better understanding of the correlation between emulsion structure and the digestive fate of emulsion-encapsulated nutrients, which make it possible to achieve controlled or potential targeted delivery of nutrients by designing the structure of emulsion-based carriers.
    • Improved emulsion stability and modified nutrient release by structuring O/W emulsions using konjac glucomannan

      Lu, Wei; Zheng, Baodong; Miao, Song; National Natural Science Foundation of China; China Scholarship Council; 31628016; 201508300001 (Elsevier, 2018-02-22)
      Functional konjac glucomannan (KGM) was used to structure the water phase of O/W emulsions containing a lipophilic bioactive compound (β-carotene). KGM greatly increased the viscosity of the water phase and thus the viscosity of final emulsions. Results of Fourier-transform infrared spectroscopy (FT-IR) showed that there is no significant non-covalent interaction between KGM and whey proteins in the water phase. KGM significantly improved the creaming and pH stability of whey-protein-stabilized emulsions (p < 0.05), and significantly decreased the oiling-off of emulsions during freeze-thaw test. Emulsions with or without KGM all had good thermal stability at 80 °C. Microscopy observations indicated obvious aggregation of free proteins and oil droplets in gastric phase and an enzymatic-induced break-down of droplets, mainly in the intestinal phase of the simulated gastrointestinal tract (GIT) digestion. Emulsions with KGM-structured water phase showed a lower final release rate of encapsulated β-carotene than emulsion without KGM (p < 0.05), and the release rate decreased with the increasing KGM content. The findings of this study contribute to a better understanding of the influence of the water phase on the release of encapsulated compounds from emulsions, and make it possible to achieve controlled release of encapsulated compounds, and/or to deliver multiple health-beneficial nutrients at once by structuring emulsion-based carriers with functional natural biopolymers.