• Symposium review: Genomic investigations of flavor formation by dairy microbiota

      McAuliffe, Olivia; Kilcawley, Kieran; Stefanovic, Ewelina; Teagasc Walsh Fellowship programme; Dairy Research Ireland; IRCSET; EU Marie Curie Actions Clarin Co-Fund (Elsevier, 2018-10-19)
      Flavor is one of the most important attributes of any fermented dairy product. Dairy consumers are known to be willing to experiment with different flavors; thus, many companies producing fermented dairy products have looked at culture manipulation as a tool for flavor diversification. The development of flavor is a complex process, originating from a combination of microbiological, biochemical, and technological aspects. A key driver of flavor is the enzymatic activities of the deliberately inoculated starter cultures, in addition to the environmental or “nonstarter” microbiota. The contribution of microbial metabolism to flavor development in fermented dairy products has been exploited for thousands of years, but the availability of the whole genome sequences of the bacteria and yeasts involved in the fermentation process and the possibilities now offered by next-generation sequencing and downstream “omics” technologies is stimulating a more knowledge-based approach to the selection of desirable cultures for flavor development. By linking genomic traits to phenotypic outputs, it is now possible to mine the metabolic diversity of starter cultures, analyze the metabolic routes to flavor compound formation, identify those strains with flavor-forming potential, and select them for possible commercial application. This approach also allows for the identification of species and strains not previously considered as potential flavor-formers, the blending of strains with complementary metabolic pathways, and the potential improvement of key technological characteristics in existing strains, strains that are at the core of the dairy industry. An in-depth knowledge of the metabolic pathways of individual strains and their interactions in mixed culture fermentations can allow starter blends to be custom-made to suit industry needs. Applying this knowledge to starter culture research programs is enabling research and development scientists to develop superior starters, expand flavor profiles, and potentially develop new products for future market expansion.
    • Symposium review: Lactococcus lactis from nondairy sources: Their genetic and metabolic diversity and potential applications in cheese

      McAuliffe, Olivia; Teagasc Walsh Fellowship Programme; Dairy Research Ireland; EU Marie Curie Actions Clarin Co-Fund; Irish Research Council for Science, Engineering and Technology; European Union (Elsevier, 2018-02-13)
      The widespread dissemination of species of the lactic acid bacteria (LAB) group in different environments testifies to their extraordinary niche adaptability. Members of the LAB are present on grass and other plant material, in dairy products, on human skin, and in the gastrointestinal and reproductive tracts. The selective pressure imparted by these specific environments is a key driver in the genomic diversity observed between strains of the same species deriving from distinct habitats. Strains that are exploited in the dairy industry for the production of fermented dairy products are often referred to as “domesticated” strains. These strains, which initially may have occupied a nondairy niche, have become specialized for growth in the milk environment. In fact, comparative genome analysis of multiple LAB species and strains has revealed a central trend in LAB evolution: the loss of ancestral genes and metabolic simplification toward adaptation to nutritionally rich environments. In contrast, “environmental” strains, or those from raw milk, plants, and animals, exhibit diverse metabolic capabilities and lifestyle characteristics compared with their domesticated counterparts. Because of the limited number of established dairy strains used in fermented food production today, demand is increasing for novel strains, with concerted efforts to mine the microbiota of natural environments for strains of technological interest. Many studies have concentrated on uncovering the genomic and metabolic potential of these organisms, facilitating comparative genome analysis of strains from diverse environments and providing insight into the natural diversity of the LAB, a group of organisms that is at the core of the dairy industry. The natural biodiversity that exists in these environments may be exploited in dairy fermentations to expand flavor profiles, to produce natural “clean label” ingredients, or to develop safer products.