• A Whey Fraction Rich in Immunoglobulin G Combined with Bifidobacterium longum subsp. infantis ATCC 15697 Exhibits Synergistic Effects against Campylobacter jejuni

      Quinn, Erinn M.; Kilcoyne, Michelle; Walsh, Dan; Joshi, Lokesh; Hickey, Rita M.; Teagasc Walsh Fellowship Programme (MDPI AG, 2020-06-29)
      Evidence that whey proteins and peptides have health benefits beyond basic infant nutrition has increased dramatically in recent years. Previously, we demonstrated that a whey-derived immunoglobulin G-enriched powder (IGEP) enhanced adhesion of Bifidobacterium longum subsp. infantis ATCC 15697 (B. infantis) to HT-29 cells. In this study, we investigated the synergistic effect of IGEP-treated B. infantis on preventing the attachment of highly invasive Campylobacter jejuni 81–176 (C. jejuni) to intestinal HT-29 cells. The combination decreased the adherence of C. jejuni to the HT-29 cells by an average of 48% compared to the control (non-IGEP-treated B. infantis). We also confirmed that treatment of IGEP with sodium metaperiodate, which disables the biological recognition of the conjugated oligosaccharides, reduced adhesion of B. infantis to the intestinal cells. Thus, glycosylation of the IGEP components may be important in enhancing B. infantis adhesion. Interestingly, an increased adhesion phenotype was not observed when B. infantis was treated with bovine serum-derived IgG, suggesting that bioactivity was unique to milk-derived immunoglobulin-rich powders. Notably, IGEP did not induce growth of B. infantis within a 24 hours incubation period, as demonstrated by growth curves and metabolite analysis. The current study provides insight into the functionality of bovine whey components and highlights their potential in positively impacting the development of a healthy microbiota.