• Antimicrobials for food and feed; a bacteriocin perspective

      O'Connor, Paula M.; Kuniyoshi, Tais M.; Oliveira, Ricardo PS; Hill, Colin; Ross, R Paul; Cotter, Paul D.; Science Foundation Ireland; São Paulo Research Foundation; 12/RC/2273; 2015/24777-0; et al. (Elsevier, 2020-01-20)
      Bacteriocins are natural antimicrobials that have been consumed via fermented foods for millennia and have been the focus of renewed efforts to identify novel bacteriocins, and their producing microorganisms, for use as food biopreservatives and other applications. Bioengineering bacteriocins or combining bacteriocins with multiple modes of action (hurdle approach) can enhance their preservative effect and reduces the incidence of antimicrobial resistance. In addition to their role as food biopreservatives, bacteriocins are gaining credibility as health modulators, due to their ability to regulate the gut microbiota, which is strongly associated with human wellbeing. Indeed the strengthening link between the gut microbiota and obesity make bacteriocins ideal alternatives to Animal Growth Promoters (AGP) in animal feed also. Here we review recent advances in bacteriocin research that will contribute to the development of functional foods and feeds as a consequence of roles in food biopreservation and human/animal health.
    • New Weapons to Fight Old Enemies: Novel Strategies for the (Bio)control of Bacterial Biofilms in the Food Industry

      Coughlan, Laura M.; Cotter, Paul D.; Hill, Colin; Alvarez-Ordonez, Avelino; Science Foundation Ireland; 13/SIRG/2157 (Frontiers, 18/10/2016)
      Biofilms are microbial communities characterized by their adhesion to solid surfaces and the production of a matrix of exopolymeric substances, consisting of polysaccharides, proteins, DNA and lipids, which surround the microorganisms lending structural integrity and a unique biochemical profile to the biofilm. Biofilm formation enhances the ability of the producer/s to persist in a given environment. Pathogenic and spoilage bacterial species capable of forming biofilms are a significant problem for the healthcare and food industries, as their biofilm-forming ability protects them from common cleaning processes and allows them to remain in the environment post-sanitation. In the food industry, persistent bacteria colonize the inside of mixing tanks, vats and tubing, compromising food safety and quality. Strategies to overcome bacterial persistence through inhibition of biofilm formation or removal of mature biofilms are therefore necessary. Current biofilm control strategies employed in the food industry (cleaning and disinfection, material selection and surface preconditioning, plasma treatment, ultrasonication, etc.), although effective to a certain point, fall short of biofilm control. Efforts have been explored, mainly with a view to their application in pharmaceutical and healthcare settings, which focus on targeting molecular determinants regulating biofilm formation. Their application to the food industry would greatly aid efforts to eradicate undesirable bacteria from food processing environments and, ultimately, from food products. These approaches, in contrast to bactericidal approaches, exert less selective pressure which in turn would reduce the likelihood of resistance development. A particularly interesting strategy targets quorum sensing systems, which regulate gene expression in response to fluctuations in cell-population density governing essential cellular processes including biofilm formation. This review article discusses the problems associated with bacterial biofilms in the food industry and summarizes the recent strategies explored to inhibit biofilm formation, with special focus on those targeting quorum sensing.