• Effect of high pressure processing on the safety, shelf life and quality of raw milk

      Stratakos, Alexandros Ch.; Inguglia, Elena Sofia; Linton, Mark; Tollerton, Joan; Murphy, Liam; Corcionivoschi, Nicolae; Koidis, Anastasios; Tiwari, Brijesh K (Elsevier, 2019-01-14)
      High pressure processing (HPP) was investigated as an alternative to standard raw milk processing. Different pressure levels (400–600 MPa) and exposure times (1–5 min) were tested against artificially inoculated pathogenic E. coli, Salmonella and L. monocytogenes. HPP effectively inactivated bacterial concentration by 5 log CFU/ml. The most effective HPP conditions in terms of pathogen reduction were subsequently utilised to determine the effect of pressure on microbiological shelf life, particle size and colour of milk during refrigerated storage. Results were compared to pasteurised and raw milk. HPP (600 MPa for 3 min) also significantly reduced the total viable counts, Enterobacteriaceae, lactic acid bacteria and Pseudomonas spp. in milk thus prolonging the microbiological shelf life of milk by 1 week compared to pasteurised milk. Particle size distribution curves of raw, pasteurised and HPP milk, showed that raw and HPP milk had more similar casein and fat particle sizes compared to pasteurised milk. The results of this study show the possibility of using HPP to eliminate pathogens present in milk while maintaining key quality characteristics similar to those of raw milk.
    • Effect of pre-treatment on the generation of dipeptidyl peptidase-IV- and prolyl endopeptidase-inhibitory hydrolysates from bovine lung

      Lafarga, Tomas; Hayes, Maria; Department of Agriculture, Food and the Marine, Ireland; Teagasc Walsh Fellowship Programme; 11/F/043 (Teagasc (Agriculture and Food Development Authority), Ireland, 25/05/2017)
      The aim of this work was to study the effect of two different pre-treatments, high temperature (100 °C, 5 min) and high pressure (600 MPa, 3 min), on the potential of the enzymes papain, collagenase and Alcalase® to generate bioactive hydrolysates containing dipeptidyl peptidase-IV- (DPP-IV; EC 3.4.14.5) and prolyl endopeptidase- (PEP; EC 3.4.21.26) inhibitory peptides from bovine lung. Both pre-treatments resulted in an increase in the degree of hydrolysis over a 24 h period (P < 0.001) and significantly increased the DPP-IV- and PEP-inhibitory activities of the generated hydrolysates (P < 0.001). Generated hydrolysates included an Alcalase hydrolysate of pressure-treated bovine lung, which was the most active, and showed DPP-IV and PEP half-maximal inhibitory concentration (IC50) values of 1.43 ± 0.06 and 3.62 ± 0.07 mg/ mL, respectively. The major peptides contained in this hydrolysate were determined by liquid chromatography-tandem mass spectrometry, and results demonstrated that bovine lung is a good substrate for the release of bioactive peptides when proper pre-treatment and enzymatic treatment are applied.