• Composition of the early intestinal microbiota: Knowledge, knowledge gaps and the use of high-throughput sequencing to address these gaps

      Fouhy, Fiona; Ross, R Paul; Fitzgerald, Gerald F; STANTON, CATHERINE; Cotter, Paul D.; Irish Research Council for Science, Engineering and Technology; Teagasc Walsh Fellowship Programme; Science Foundation Ireland; 11/PI/1137 (Landes Bioscience, 01/05/2012)
      The colonization, development and maturation of the newborn gastrointestinal tract that begins immediately at birth and continues for two years, is modulated by numerous factors including mode of delivery, feeding regime, maternal diet/weight, probiotic and prebiotic use and antibiotic exposure pre-, peri- and post-natally. While in the past, culture-based approaches were used to assess the impact of these factors on the gut microbiota, these have now largely been replaced by culture-independent DNA-based approaches and most recently, high-throughput sequencing-based forms thereof. The aim of this review is to summarize recent research into the modulatory factors that impact on the acquisition and development of the infant gut microbiota, to outline the knowledge recently gained through the use of culture-independent techniques and, in particular, highlight advances in high-throughput sequencing and how these technologies have, and will continue to, fill gaps in our knowledge with respect to the human intestinal microbiota.
    • Conjugated linoleic acid production and probiotic assessment of Lactobacillus plantarum isolated from Pico cheese

      Ribeiro, Susana C.; STANTON, CATHERINE; Yang, Bo; Ross, R Paul; Silva, Célia C.G.; Fundação para a Ciência e Tecnologia; Science Foundation of Ireland; Fundo Regional para a Ciência e Tecnologia; PTDC/AGR-ALI/104385/2008; M3.1.2/F/011/2011 (Elsevier, 2017-12-29)
      Lactic acid bacteria isolated from a traditional Azorean cheese were screened for their ability to convert free linoleic acid to conjugated linoleic acid (CLA). Two strains of Lactobacillus plantarum were recognized as potential CLA producers. GC analysis identified cis-9, trans-11 C18:2 as the predominant isomer (10–14 μg/mL), followed by trans-9, trans-11 C18:2 (4–6 μg/mL). The CLA producing strains demonstrated strong biofilm capacity, high cell surface hydrophobicity and good auto-aggregation ability. These strains were capable of surviving in the presence of bile salts (0.3%) and pancreatin (0.1%), but only the highest CLA producer (L3C1E8) was able to resist low pH (2.5). Moreover, the CLA-producers showed good adhesion capacity to intestinal human cells (Caco-2 and HT-29) and were able to prevent colonization of Escherichia coli. Of the two strains, Lactobacillus plantarum L3C1E8 revealed superior probiotic properties and great potential for producing food products enriched in the two CLA isomers, cis-9, trans-11 C18:2 (60%) and trans-9, trans-11 C18:2 (25%).
    • The gut microbiota and the liver. Pathophysiological and clinical implications

      Quigley, Eamonn M.; STANTON, CATHERINE; Murphy, Eileen F. (Elsevier, 2012-11-23)
      This article reviews the microbiota in the pathogenesis of liver disease and its complications and the therapeutic impact of modulating the microbiota
    • Lactobacillus rhamnosus GG soluble mediators ameliorate early life stress-induced visceral hypersensitivity and changes in spinal cord gene expression

      McVey Neufeld, Karen-Anne; Strain, Conall R.; Pusceddu, Matteo M.; Waworuntu, Rosaline V.; Manurung, Sarmauli; Gross, Gabriele; M. Moloney, Gerry; Hoban, Alan E.; Murphy, Kiera; STANTON, CATHERINE; et al. (Portland Press Ltd., 2020-11-23)
      Visceral hypersensitivity is a hallmark of many functional and stress-related gastrointestinal disorders, and there is growing evidence that the gut microbiota may play a role in its pathophysiology. It has previously been shown that early life stress-induced visceral sensitivity is reduced by various probiotic strains of bacteria (including Lactobacillus rhamnosus GG (LGG)) alone or in combination with prebiotic fibres in rat models. However, the exact mechanisms underpinning such effects remain unresolved. Here, we investigated if soluble mediators derived from LGG can mimic the bacteria’s effects on visceral hypersensitivity and the microbiota–gut–brain axis. Rats were exposed to maternal separation (MS) from postnatal days 2–12. From weaning onwards both non-separated (NS) and MS offspring were provided drinking water with or without supplementation of standardized preparations of the LGG soluble mediators (LSM). Our results show that MS led to increased visceral sensitivity and exaggerated corticosterone plasma levels following restraint stress in adulthood, and both of these effects were ameliorated through LSM supplementation. Differential regulation of various genes in the spinal cord of MS versus NS rats was observed, 41 of which were reversed by LSM supplementation. At the microbiota composition level MS led to changes in beta diversity and abundance of specific bacteria including parabacteroides, which were ameliorated by LSM. These findings support probiotic soluble mediators as potential interventions in the reduction of symptoms of visceral hypersensitivity.
    • Next-generation multiparameter flow cytometry assay improves the assessment of oxidative stress in probiotics

      Fallico, Vincenzo; Rea, Mary; Stanton, Catherine; Ilestam, Niclas; McKinney, Julie; Pfizer Consumer Healthcare (USA) (Elsevier, 2020-04-07)
      Stability of probiotic products’ potency throughout shelf life is essential to ensure systematic delivery of the dosages required to provide clinically-proven health benefits. Due to the oxygen sensitivity of gut-derived microorganisms, methods for the rapid and accurate monitoring of oxidative stress in probiotics are greatly needed as they can be instrumental to both bioprocess optimization and quality control. This study introduces a next-generation flow cytometry method multiplexing the CellROX® Green and Propidium Iodide probes for the simultaneous measurement of free total reactive oxygen species (ROS) and membrane integrity, respectively. The multiparameter method was compared to the single-parameter assays, measuring either ROS or membrane integrity, for the ability to evaluate the fitness of Lactobacillus rhamnosus GG (LGG) after freeze drying, spray drying and H2O2-mediated oxidative stress. Each stand-alone assay detected only three cell populations, showing either differential membrane integrity (Syto 24+/PI-, Syto 24+/PI+, Syto 24-/PI+) or ROS levels (ROS-, low-ROS, high-ROS), and no correlation could be drawn between these groups. Conversely, the multiparameter method detected up to five physiologically distinct cell populations and allowed the integrated assessment of their membrane integrity and oxidative stress. It also revealed a much larger fitness heterogeneity in LGG as each group of low-ROS and high-ROS cells was found to be formed by a healthier population with an intact membrane (L-ROS/PI-, H-ROS/PI-) and a population with damaged membrane (L-ROS/PI+, H-ROS/PI+). As the CRG probe only detects free unreacted ROS, these populations are suggested to reflect the dynamic lifecycle of ROS formation, accumulation and reactive depletion leading to oxidative damage of macromolecules and consequent cell death. With the stand-alone CRG assay being unable to detect ROS lifecycle, the multiparameter method here presented delivers a superior profiling of the heterogeneity generated by oxidative stress in bacteria and enables a more correct interpretation of CRG fluorescence data. We provide recent examples from literature where the use of a single-parameter fluorescence approach may have led to misinterpret oxidative stress data and eventually draw erroneous conclusions.