• Aquaculture Production of the Brown Seaweeds Laminaria digitata and Macrocystis pyrifera: Applications in Food and Pharmaceuticals

      Purcell-Meyerink, Diane; Packer, Michael A.; Wheeler, Thomas T.; Hayes, Maria; Teagasc; European Union; 754380 (Multidisciplinary Digital Publishing Institute, 2021-02-28)
      Seaweeds have a long history of use as food, as flavouring agents, and find use in traditional folk medicine. Seaweed products range from food, feed, and dietary supplements to pharmaceuticals, and from bioenergy intermediates to materials. At present, 98% of the seaweed required by the seaweed industry is provided by five genera and only ten species. The two brown kelp seaweeds Laminaria digitata, a native Irish species, and Macrocystis pyrifera, a native New Zealand species, are not included in these eleven species, although they have been used as dietary supplements and as animal and fish feed. The properties associated with the polysaccharides and proteins from these two species have resulted in increased interest in them, enabling their use as functional foods. Improvements and optimisations in aquaculture methods and bioproduct extractions are essential to realise the commercial potential of these seaweeds. Recent advances in optimising these processes are outlined in this review, as well as potential future applications of L. digitata and, to a greater extent, M. pyrifera which, to date, has been predominately only wild-harvested. These include bio-refinery processing to produce ingredients for nutricosmetics, functional foods, cosmeceuticals, and bioplastics. Areas that currently limit the commercial potential of these two species are highlighted
    • Marine Gelatine from Rest Raw Materials

      Milovanovic, Ivan; Hayes, Maria; Bord Iascaigh Mhara (BIM); DAFM/07/2017/PDFP (MDPI, 2018-11-27)
      In recent years, demand for consumption of marine foods, and especially fish, has substantially increased worldwide. The majority of collagen available is sourced from mammalian-derived products. Although fish derived gelatine is a viable alternative to mammalian sourced gelatine, there are certain limitations related to the use of fish gelatine that include odour, colour, functional properties, and consistency in its amino acid composition. Chemicals used for pre-treatment, as well as extraction conditions such as temperature and time, can influence the length of polypeptide chains that result and the functional properties of the gelatine. Compared to traditional sources, gelatines derived from fish show significant differences in chemical and physical properties, and great care should be paid to optimization of the production process in order to obtain a product with the best properties for intended applications. The focus of this review is to explore the feasibility of producing gelatine sourced from marine processing by-products using different pre-treatment and extraction strategies with the aim of improving the techno-functional properties of the final product and improving the clean-label status of gelatines. The bioactivities of gelatine hydrolysates are also discussed.
    • Marine Gelatine from Rest Raw Materials

      Milovanovic, Ivan; Hayes, Maria; Bord Iascaigh Mhara; DAFM/07/2017/PDFP (Preprints 2018, 2018-10-09)
      In recent years, demand for consumption of marine foods, and especially fish, has substantially increased worldwide. The majority of collagen available is sourced from mammalian-derived products. Although fish derived gelatine is a viable alternative to mammalian sourced gelatine, there are some challenges related to the use of fish gelatine including odour, colour, gelling and film forming properties as well as consistency in gelatine amino acid composition. Chemicals used for pre-treatment, as well as extraction conditions such as temperature and time, can influence the length of polypeptide chains that result and the functional properties of the gelatine. Compared to mammalian sources, gelatines derived from fish show notable differences in physical and chemical properties, and great care should be paid to optimization of the production process in order to obtain a product with the best properties for intended applications. The focus of this review is to explore the feasibility of producing gelatine sourced from marine processing by-products using different pre-treatment and extraction strategies with the aim of improving the techno-functional properties of the final product and improving the clean-label status of gelatines. The bioactivities of gelatine hydrolysates are also discussed.
    • Marine Gelatine from Rest Raw Materials

      Milovanovic, Ivan; Hayes, Maria; Bord Iascaigh Mhara; DAFM/07/2017/PDFP (MDPI AG, 2018-11-27)
      In recent years, demand for consumption of marine foods, and especially fish, has substantially increased worldwide. The majority of collagen available is sourced from mammalian-derived products. Although fish derived gelatine is a viable alternative to mammalian sourced gelatine, there are certain limitations related to the use of fish gelatine that include odour, colour, functional properties, and consistency in its amino acid composition. Chemicals used for pre-treatment, as well as extraction conditions such as temperature and time, can influence the length of polypeptide chains that result and the functional properties of the gelatine. Compared to traditional sources, gelatines derived from fish show significant differences in chemical and physical properties, and great care should be paid to optimization of the production process in order to obtain a product with the best properties for intended applications. The focus of this review is to explore the feasibility of producing gelatine sourced from marine processing by-products using different pre-treatment and extraction strategies with the aim of improving the techno-functional properties of the final product and improving the clean-label status of gelatines. The bioactivities of gelatine hydrolysates are also discussed.
    • A Review of Extraction and Analysis of Bioactives in Oat and Barley and Scope for Use of Novel Food Processing Technologies

      Gangopadhyay, Nirupama; Rai, Dilip K.; Brunton, Nigel; Hossain, Mohammad Billal; Department of Agriculture, Food and the Marine.; 11/SF/317 (MDPI, 2015-06-12)
      Oat and barely are cereal crops mainly used as animal feed and for the purposes of malting and brewing, respectively. Some studies have indicated that consumption of oat and barley rich foods may reduce the risk of some chronic diseases such as coronary heart disease, type II diabetes and cancer. Whilst there is no absolute consensus, some of these benefits may be linked to presence of compounds such as phenolics, vitamin E and β-glucan in these cereals. A number of benefits have also been linked to the lipid component (sterols, fatty acids) and the proteins and bioactive peptides in oats and barley. Since the available evidence is pointing toward the possible health benefits of oat and barley components, a number of authors have examined techniques for recovering them from their native sources. In the present review, we summarise and examine the range of conventional techniques that have been used for the purpose of extraction and detection of these bioactives. In addition, the recent advances in use of novel food processing technologies as a substitute to conventional processes for extraction of bioactives from oats and barley, has been discussed.