• 48 Altered gut microbiota in stable patients with cystic fibrosis (CF) compared to controls and its relationship with intravenous (IV) antibiotic usage and lung function

      Burke, D.G.; Fouhy, Fiona; Rea, Mary; Harrison, M.J.; STANTON, CATHERINE; O’Sullivan, Orla; Murphy, D. M.; O'Callaghan, G. P.; Eustace, J. A.; Shanahan, F.; et al. (Elsevier, 2015-06-05)
      Objective CF is associated with altered digestive function and thus nutrient availability for gut microbes in addition to altered gut microbiota, compared with healthy controls. Equally intensive antibiotic and nutritional therapy may further compound this. We present results from the largest CF gut microbiota study to date.
    • Beneficial modulation of the gut microbiota

      Cotter, Paul D. (Elsevier, 2016-03-29)
      As the scientific community continues to develop an ever-greater understanding of the composition and function of the human gut microbiota, and the role of specific microbial populations in health and disease, attention has turned to the tools that are at our disposal with respect to altering these microbes in a beneficial way. The options available include the use of diet, probiotics/prebiotics, antimicrobials and, potentially, exercise. Here, our recent investigations of the relationship between protein, bacteriocin producing probiotics and exercise and the gut microbiota and, in turn, health will be described.
    • Beneficial modulation of the gut microbiota

      Cotter, Paul D. (Elsevier, 2016-03-29)
      As the scientific community continues to develop an ever-greater understanding of the composition and function of the human gut microbiota, and the role of specific microbial populations in health and disease, attention has turned to the tools that are at our disposal with respect to altering these microbes in a beneficial way. The options available include the use of diet, probiotics/prebiotics, antimicrobials and, potentially, exercise. Here, our recent investigations of the relationship between protein, bacteriocin producing probiotics and exercise and the gut microbiota and, in turn, health will be described.
    • Diversity of Gut Microbiota and Bifidobacterial Community of Chinese Subjects of Different Ages and from Different Regions

      Yang, Bo; Yan, Shuang; Chen, Yang; Ross, R. Paul; STANTON, CATHERINE; Zhao, Jianxin; Zhang, Hao; Chen, Wei; National Natural Science Foundation of China; National First-Class Discipline Program of Food Science and Technology; et al. (MDPI AG, 2020-07-24)
      Gut microbiota composition and functionality are closely linked to host health. In this study, the fecal microbiota and bifidobacterial communities of 111 healthy volunteers from four regions of China of varying age profiles (Child, 1–5 years; Young, 18–50 years; Elder, 60–80 years; Longevity, ≥90 years) were investigated via high-throughput sequencing. Canonical analysis revealed that the gut microbiota, as well as bifidobacteria profiles of the subjects, clustered according to their regions and age. Eight genera were shared among all subjects, however, certain genera distributed differently in subjects grouped by region and age. Faecalibacterium was enriched in samples from Zhongxiang, unclassified Ruminococcaceae and Christensenellaceae were enriched in the Longevity group, and Bifidobacterium was enriched in Child. Within Bifidobacterium, B. longum was the most abundant species in almost all samples except for Child, in which B. pseudocatenulatum was the most abundant. Additionally, the abundances of B. adolescentis and B. dentium were lower in Child. In conclusion, our results suggest that geography and age affect the structure of the gut microbiota, as well as Bifidobacterium composition, and this variation may greatly associate with the metabolic and immune changes that occur during the process of aging.
    • Early Salmonella Typhimurium infection in pigs disrupts Microbiome composition and functionality principally at the ileum mucosa

      Argüello, Héctor; Estellé, Jordi; Zaldívar-López, Sara; Jiménez-Marín, Ángeles; Carvajal, Ana; López-Bascón, Mª Asunción; Crispie, Fiona; O’Sullivan, Orla; Cotter, Paul D.; Priego-Capote, Feliciano; et al. (Springer Nature, 2018-05-17)
      Salmonella is a major foodborne pathogen which successfully infects animal species for human consumption such as swine. The pathogen has a battery of virulence factors which it uses to colonise and persist within the host. The host microbiota may play a role in resistance to, and may also be indirectly responsible from some of the consequences of, Salmonella infection. To investigate this, we used 16S rRNA metagenomic sequencing to determine the changes in the gut microbiota of pigs in response to infection by Salmonella Typhimurium at three locations: ileum mucosa, ileum content and faeces. Early infection (2 days post-infection) impacted on the microbiome diversity at the mucosa, reflected in a decrease in representatives of the generally regarded as desirable genera (i.e., Bifidobacterium and Lactobacillus). Severe damage in the epithelium of the ileum mucosa correlated with an increase in synergistic (with respect to Salmonella infection; Akkermansia) or opportunistically pathogenic bacteria (Citrobacter) and a depletion in anaerobic bacteria (Clostridium spp., Ruminococcus, or Dialliser). Predictive functional analysis, together with metabolomic analysis revealed changes in glucose and lipid metabolism in infected pigs. The observed changes in commensal healthy microbiota, including the growth of synergistic or potentially pathogenic bacteria and depletion of beneficial or competing bacteria, could contribute to the pathogen’s ability to colonize the gut successfully. The findings from this study could be used to form the basis for further research aimed at creating intervention strategies to mitigate the effects of Salmonella infection.
    • Food for thought: The role of nutrition in the microbiota-gut–brain axis

      Oriach, Clara Seira; Robertson, Ruairi C.; STANTON, CATHERINE; Cryan, John F.; Dinan, Timothy G.; Science Foundation Ireland; Health Research Board of Ireland; Sea Change Strategy; NutraMara programme; SMART FOOD project; et al. (Elsevier BV, 2016-04)
      Recent research has provided strong evidence for the role of the commensal gut microbiota in brain function and behaviour. Many potential pathways are involved in this bidirectional communication between the gut microbiota and the brain such as immune mechanisms, the vagus nerve and microbial neurometabolite production. Dysbiosis of gut microbial function has been associated with behavioural and neurophysical deficits, therefore research focused on developing novel therapeutic strategies to treat psychiatric disorders by targeting the gut microbiota is rapidly growing. Numerous factors can influence the gut microbiota composition such as health status, mode of birth delivery and genetics, but diet is considered among the most crucial factors impacting on the human gut microbiota from infancy to old age. Thus, dietary interventions may have the potential to modulate psychiatric symptoms associated with gut–brain axis dysfunction. Further clinical and in vivo studies are needed to better understand the mechanisms underlying the link between nutrition, gut microbiota and control of behaviour and mental health.
    • The Fungal Frontier: A Comparative Analysis of Methods Used in the Study of the Human Gut Mycobiome

      Huseyin, Chloe E.; Cabrera-Rubio, Raul; O'Sullivan, Orla; Cotter, Paul D.; Scanlan, Pauline D. (Frontiers, 31/07/2017)
      The human gut is host to a diverse range of fungal species, collectively referred to as the gut “mycobiome”. The gut mycobiome is emerging as an area of considerable research interest due to the potential roles of these fungi in human health and disease. However, there is no consensus as to what the best or most suitable methodologies available are with respect to characterizing the human gut mycobiome. The aim of this study is to provide a comparative analysis of several previously published mycobiome-specific culture-dependent and -independent methodologies, including choice of culture media, incubation conditions (aerobic versus anaerobic), DNA extraction method, primer set and freezing of fecal samples to assess their relative merits and suitability for gut mycobiome analysis. There was no significant effect of media type or aeration on culture-dependent results. However, freezing was found to have a significant effect on fungal viability, with significantly lower fungal numbers recovered from frozen samples. DNA extraction method had a significant effect on DNA yield and quality. However, freezing and extraction method did not have any impact on either α or β diversity. There was also considerable variation in the ability of different fungal-specific primer sets to generate PCR products for subsequent sequence analysis. Through this investigation two DNA extraction methods and one primer set was identified which facilitated the analysis of the mycobiome for all samples in this study. Ultimately, a diverse range of fungal species were recovered using both approaches, with Candida and Saccharomyces identified as the most common fungal species recovered using culture-dependent and culture-independent methods, respectively. As has been apparent from ecological surveys of the bacterial fraction of the gut microbiota, the use of different methodologies can also impact on our understanding of gut mycobiome composition and therefore requires careful consideration. Future research into the gut mycobiome needs to adopt a common strategy to minimize potentially confounding effects of methodological choice and to facilitate comparative analysis of datasets.
    • Gut microbes from the phylogenetically diverse genus Eubacterium and their various contributions to gut health

      Mukherjee, Arghya; Lordan, Cathy; Ross, R. Paul; Cotter, Paul D.; Department of Agriculture, Food and the Marine; Teagasc Walsh Fellowship; Science Foundation Ireland; EU; 15/F/635; 2017047; et al. (Taylor & Francis, 2020-08-23)
      Over the last two decades our understanding of the gut microbiota and its contribution to health and disease has been transformed. Among a new ‘generation’ of potentially beneficial microbes to have been recognized are members of the genus Eubacterium, who form a part of the core human gut microbiome. The genus consists of phylogenetically, and quite frequently phenotypically, diverse species, making Eubacterium a taxonomically unique and challenging genus. Several members of the genus produce butyrate, which plays a critical role in energy homeostasis, colonic motility, immunomodulation and suppression of inflammation in the gut. Eubacterium spp. also carry out bile acid and cholesterol transformations in the gut, thereby contributing to their homeostasis. Gut dysbiosis and a consequently modified representation of Eubacterium spp. in the gut, have been linked with various human disease states. This review provides an overview of Eubacterium species from a phylogenetic perspective, describes how they alter with diet and age and summarizes its association with the human gut and various health conditions.
    • Lactobacillus acidophilus JCM 1132 Strain and Its Mutant with Different Bacteriocin-Producing Behaviour Have Various In Situ Effects on the Gut Microbiota of Healthy Mice

      Wang, Gang; Yu, Yunxia; Garcia-Gutierrez, Enriqueta; Jin, Xing; He, Yufeng; Wang, Linlin; Tian, Peijun; Liu, Zhenmin; Zhao, Jianxin; Zhang, Hao; et al. (MDPI AG, 2019-12-25)
      The production of bacteriocin is considered to be a probiotic trait of lactic acid bacteria (LAB). However, not all strains of LAB harbour bacteriocin genes, even within the same species. Moreover, the effects of bacteriocins on the host gut microbiota and on host physiological indicators are rarely studied. This study evaluated the effects of the bacteriocin-producing Lactobacillus acidophilus strain JCM1132 and its non-producing spontaneous mutant, L. acidophilus CCFM720, on the physiological statuses and gut microbiota of healthy mice. Mice that received the bacteriocin-producing strain JCM1132 exhibited reduced water and food intake. Furthermore, the administration of these strains induced significant changes in the compositional abundance of faecal microbiota at the phylum and genus levels, and some of these changes were more pronounced after one week of withdrawal. The effects of CCFM720 treatment on the gut microbiota seemed to favour the prevention of metabolic diseases to some extent. However, individuals that received JCM1132 treatment exhibited weaker inflammatory responses than those that received CCFM720 treatment. Our results indicate that treatment with bacteriocin-producing or non-producing strains can have different effects on the host. Accordingly, this trait should be considered in the applications of LAB.
    • The Microbiota and Health Promoting Characteristics of the Fermented Beverage Kefir

      Bourrie, Benjamin C. T.; Willing, Benjamin P.; Cotter, Paul D.; Science Foundation Ireland; Teagasc Walsh Fellowship Programme; Canada Research Chairs Program; SFI/11/PI/1137; SFI/12/RC/2273; 2014025 (Frontiers Media S. A., 04/05/2016)
      Kefir is a complex fermented dairy product created through the symbiotic fermentation of milk by lactic acid bacteria and yeasts contained within an exopolysaccharide and protein complex called a kefir grain. As with other fermented dairy products, kefir has been associated with a range of health benefits such as cholesterol metabolism and angiotensin-converting enzyme (ACE) inhibition, antimicrobial activity, tumor suppression, increased speed of wound healing, and modulation of the immune system including the alleviation of allergy and asthma. These reports have led to increased interest in kefir as a focus of research and as a potential probiotic-containing product. Here, we review those studies with a particular emphasis on the microbial composition and the health benefits of the product, as well as discussing the further development of kefir as an important probiotic product.
    • Prebiotics from Seaweeds: An Ocean of Opportunity?

      Cherry, Paul; Yadav, Supriya; Strain, Conall R.; Allsopp, Philip J.; McSorley, Emeir; Ross, R Paul; STANTON, CATHERINE; Department of Agriculture Food and the Marine; Science Foundation Ireland; 13F511 (PREMARA) (MDPI, 2019-06-01)
      Abstract Seaweeds are an underexploited and potentially sustainable crop which offer a rich source of bioactive compounds, including novel complex polysaccharides, polyphenols, fatty acids, and carotenoids. The purported efficacies of these phytochemicals have led to potential functional food and nutraceutical applications which aim to protect against cardiometabolic and inflammatory risk factors associated with non-communicable diseases, such as obesity, type 2 diabetes, metabolic syndrome, cardiovascular disease, inflammatory bowel disease, and some cancers. Concurrent understanding that perturbations of gut microbial composition and metabolic function manifest throughout health and disease has led to dietary strategies, such as prebiotics, which exploit the diet-host-microbe paradigm to modulate the gut microbiota, such that host health is maintained or improved. The prebiotic definition was recently updated to “a substrate that is selectively utilised by host microorganisms conferring a health benefit”, which, given that previous discussion regarding seaweed prebiotics has focused upon saccharolytic fermentation, an opportunity is presented to explore how non-complex polysaccharide components from seaweeds may be metabolised by host microbial populations to benefit host health. Thus, this review provides an innovative approach to consider how the gut microbiota may utilise seaweed phytochemicals, such as polyphenols, polyunsaturated fatty acids, and carotenoids, and provides an updated discussion regarding the catabolism of seaweed-derived complex polysaccharides with potential prebiotic activity. Additional in vitro screening studies and in vivo animal studies are needed to identify potential prebiotics from seaweeds, alongside untargeted metabolomics to decipher microbial-derived metabolites from seaweeds. Furthermore, controlled human intervention studies with health-related end points to elucidate prebiotic efficacy are required.
    • Protein quality and quantity influence the effect of dietary fat on weight gain and tissue partitioning via host-microbiota changes

      Nychyk, Oleksandr; Barton, Wiley; Rudolf, Agata M.; Boscaini, Serena; Walsh, Aaron; Bastiaanssen, Thomaz F.S.; Giblin, Linda; Cormican, Paul; Chen, Liang; Piotrowicz, Yolanda; et al. (Elsevier BV, 2021-05-11)
      We investigated how protein quantity (10%–30%) and quality (casein and whey) interact with dietary fat (20%–55%) to affect metabolic health in adult mice. Although dietary fat was the main driver of body weight gain and individual tissue weight, high (30%) casein intake accentuated and high whey intake reduced the negative metabolic aspects of high fat. Jejunum and liver transcriptomics revealed increased intestinal permeability, low-grade inflammation, altered lipid metabolism, and liver dysfunction in casein-fed but not whey-fed animals. These differential effects were accompanied by altered gut size and microbial functions related to amino acid degradation and lipid metabolism. Fecal microbiota transfer confirmed that the casein microbiota increases and the whey microbiota impedes weight gain. These data show that the effects of dietary fat on weight gain and tissue partitioning are further influenced by the quantity and quality of the associated protein, primarily via effects on the microbiota.
    • Seaweed Components as Potential Modulators of the Gut Microbiota

      Shannon, Emer; Conlon, Michael; Hayes, Maria; Marie Skłodowska-Curie; 754380. (MDPI AG, 2021-06-23)
      Macroalgae, or seaweeds, are a rich source of components which may exert beneficial effects on the mammalian gut microbiota through the enhancement of bacterial diversity and abundance. An imbalance of gut bacteria has been linked to the development of disorders such as inflammatory bowel disease, immunodeficiency, hypertension, type-2-diabetes, obesity, and cancer. This review outlines current knowledge from in vitro and in vivo studies concerning the potential therapeutic application of seaweed-derived polysaccharides, polyphenols and peptides to modulate the gut microbiota through diet. Polysaccharides such as fucoidan, laminarin, alginate, ulvan and porphyran are unique to seaweeds. Several studies have shown their potential to act as prebiotics and to positively modulate the gut microbiota. Prebiotics enhance bacterial populations and often their production of short chain fatty acids, which are the energy source for gastrointestinal epithelial cells, provide protection against pathogens, influence immunomodulation, and induce apoptosis of colon cancer cells. The oral bioaccessibility and bioavailability of seaweed components is also discussed, including the advantages and limitations of static and dynamic in vitro gastrointestinal models versus ex vivo and in vivo methods. Seaweed bioactives show potential for use in prevention and, in some instances, treatment of human disease. However, it is also necessary to confirm these potential, therapeutic effects in large-scale clinical trials. Where possible, we have cited information concerning these trials
    • Seaweed Components as Potential Modulators of the Gut Microbiota

      Shannon, Emer; Conlon, Michael; Hayes, Maria; Teagasc; European Union; 754380 (MDPI AG, 2021-06-23)
      Macroalgae, or seaweeds, are a rich source of components which may exert beneficial effects on the mammalian gut microbiota through the enhancement of bacterial diversity and abundance. An imbalance of gut bacteria has been linked to the development of disorders such as inflammatory bowel disease, immunodeficiency, hypertension, type-2-diabetes, obesity, and cancer. This review outlines current knowledge from in vitro and in vivo studies concerning the potential therapeutic application of seaweed-derived polysaccharides, polyphenols and peptides to modulate the gut microbiota through diet. Polysaccharides such as fucoidan, laminarin, alginate, ulvan and porphyran are unique to seaweeds. Several studies have shown their potential to act as prebiotics and to positively modulate the gut microbiota. Prebiotics enhance bacterial populations and often their production of short chain fatty acids, which are the energy source for gastrointestinal epithelial cells, provide protection against pathogens, influence immunomodulation, and induce apoptosis of colon cancer cells. The oral bioaccessibility and bioavailability of seaweed components is also discussed, including the advantages and limitations of static and dynamic in vitro gastrointestinal models versus ex vivo and in vivo methods. Seaweed bioactives show potential for use in prevention and, in some instances, treatment of human disease. However, it is also necessary to confirm these potential, therapeutic effects in large-scale clinical trials. Where possible, we have cited information concerning these trials.
    • Whey protein effects on energy balance link the intestinal mechanisms of energy absorption with adiposity and hypothalamic neuropeptide gene expression

      Nilaweera, Kanishka; Cabrera-Rubio, Raul; Speakman, John R.; O'Connor, Paula M.; McAuliffe, Ann Marie; Guinane, Caitriona M.; Lawton, Elaine M.; Crispie, Fiona; Aguillera, Monica; Stanley, Maurice; et al. (American Physiological Society, 21/03/2017)
      We tested the hypothesis that dietary whey protein isolate (WPI) affects the intestinal mechanisms related to energy absorption and that the resulting energy deficit is compensated by changes in energy balance to support growth. C57BL/6 mice were provided a diet enriched with WPI with varied sucrose content, and the impact on energy balance-related parameters was investigated. As part of a high-sucrose diet, WPI reduced the hypothalamic expression of pro-opiomelanocortin gene expression and increased energy intake. The energy expenditure was unaffected, but epididymal weight was reduced, indicating an energy loss. Notably, there was a reduction in the ileum gene expression for amino acid transporter SLC6a19, glucose transporter 2, and fatty acid transporter 4. The composition of the gut microbiota also changed, where Firmicutes were reduced. The above changes indicated reduced energy absorption through the intestine. We propose that this mobilized energy in the adipose tissue and caused hypothalamic changes that increased energy intake, acting to counteract the energy deficit arising in the intestine. Lowering the sucrose content in the WPI diet increased energy expenditure. This further reduced epididymal weight and plasma leptin, whereupon hypothalamic ghrelin gene expression and the intestinal weight were both increased. These data suggest that when the intestine-adipose-hypothalamic pathway is subjected to an additional energy loss (now in the adipose tissue), compensatory changes attempt to assimilate more energy. Notably, WPI and sucrose content interact to enable the component mechanisms of this pathway.