• 16S rRNA gene sequencing of mock microbial populations- impact of DNA extraction method, primer choice and sequencing platform

      Fouhy, Fiona; Clooney, Adam G; Stanton, Catherine; Claesson, Marcus J.; Cotter, Paul D.; European Union; Science Foundation Ireland; 603038; SFI/12/RC/2273; SFI/11/PI/1137 (Biomed Central, 24/06/2016)
      Background Next-generation sequencing platforms have revolutionised our ability to investigate the microbiota composition of complex environments, frequently through 16S rRNA gene sequencing of the bacterial component of the community. Numerous factors, including DNA extraction method, primer sequences and sequencing platform employed, can affect the accuracy of the results achieved. The aim of this study was to determine the impact of these three factors on 16S rRNA gene sequencing results, using mock communities and mock community DNA. Results The use of different primer sequences (V4-V5, V1-V2 and V1-V2 degenerate primers) resulted in differences in the genera and species detected. The V4-V5 primers gave the most comparable results across platforms. The three Ion PGM primer sets detected more of the 20 mock community species than the equivalent MiSeq primer sets. Data generated from DNA extracted using the 2 extraction methods were very similar. Conclusions Microbiota compositional data differed depending on the primers and sequencing platform that were used. The results demonstrate the risks in comparing data generated using different sequencing approaches and highlight the merits of choosing a standardised approach for sequencing in situations where a comparison across multiple sequencing runs is required.
    • 48 Altered gut microbiota in stable patients with cystic fibrosis (CF) compared to controls and its relationship with intravenous (IV) antibiotic usage and lung function

      Burke, D.G.; Fouhy, Fiona; Rea, Mary C.; Harrison, M.J.; Stanton, Catherine; O’Sullivan, Orla; Murphy, D. M.; O'Callaghan, G. P.; Eustace, J. A.; Shanahan, F.; et al. (Elsevier, 2015-06-05)
      Objective CF is associated with altered digestive function and thus nutrient availability for gut microbes in addition to altered gut microbiota, compared with healthy controls. Equally intensive antibiotic and nutritional therapy may further compound this. We present results from the largest CF gut microbiota study to date.
    • Adding value to milk by increasing its protein and CLA contents

      Murphy, J.J.; Stanton, Catherine; O'Donovan, Michael; Kavanagh, S.; Maher, J.; Patton, Joe; Mohammed, Riaz (Teagasc, 01/08/2008)
      The mid-summer milk protein study was undertaken on 34 commercial dairy farms in 2005 to evaluate the influence of dietary and management variables on milk protein content in mid-season. Data on grass composition, genetic merit of the herds and milk protein content were collected and analysed by multiple regression. Both calving date and genetic merit for milk protein content were significantly associated with milk protein content and were used as adjustment factors when evaluating the association between measures of grass quality and milk protein content. Milk protein content was associated with grass OMD (P = 0.04) and NDF content (P = 0.02) but not with CP content (P = 0.80). It is concluded that herds calving earlier, with a greater genetic merit for milk protein content and consuming better quality pasture would have greater milk protein contents in mid-season.
    • Administration of a live culture of Lactococcus lactis DPC 3147 into the bovine mammary gland stimulates the local host immune response, particularly IL-1β and IL-8 gene expression

      Beecher, Christine; Daly, Mairead; Berry, Donagh P.; Klostermann, Katja; Flynn, James; Meaney, William J; Hill, Colin; McCarthy, Tommie V; Ross, R Paul; Giblin, Linda; et al. (Cambridge University Press: Published for the Institute of Food Research and the Hannah Research Institute, 18/05/2009)
      Mastitis is one of the most costly diseases to the dairy farming industry. Conventional antibiotic therapy is often unsatisfactory for successful treatment of mastitis and alternative treatments are continually under investigation. We have previously demonstrated, in two separate field trials, that a probiotic culture, Lactococcus lactis DPC 3147, was comparable to antibiotic therapy to treat bovine mastitis. To understand the mode of action of this therapeutic, we looked at the detailed immune response of the host to delivery of this live strain directly into the mammary gland of six healthy dairy cows. All animals elicited signs of udder inflammation 7 h post infusion. At this time, clots were visible in the milk of all animals in the investigation. The most pronounced increase in immune gene expression was observed in Interleukin (IL)-1b and IL-8, with highest expression corresponding to peaks in somatic cell count. Infusion with a live culture of a Lc. lactis leads to a rapid and considerable innate immune response.
    • Algal Proteins: Extraction, Application, and Challenges Concerning Production

      Bleakley, Stephen; Hayes, Maria; Teagasc Walsh Fellowship Programme (MDPI, 26/04/2017)
      Population growth combined with increasingly limited resources of arable land and fresh water has resulted in a need for alternative protein sources. Macroalgae (seaweed) and microalgae are examples of under-exploited “crops”. Algae do not compete with traditional food crops for space and resources. This review details the characteristics of commonly consumed algae, as well as their potential for use as a protein source based on their protein quality, amino acid composition, and digestibility. Protein extraction methods applied to algae to date, including enzymatic hydrolysis, physical processes, and chemical extraction and novel methods such as ultrasound-assisted extraction, pulsed electric field, and microwave-assisted extraction are discussed. Moreover, existing protein enrichment methods used in the dairy industry and the potential of these methods to generate high value ingredients from algae, such as bioactive peptides and functional ingredients are discussed. Applications of algae in human nutrition, animal feed, and aquaculture are examined
    • The altered gut microbiota in adults with cystic fibrosis

      Burke, D.G.; Fouhy, Fiona; Harrison, M. J; Rea, Mary C.; Cotter, Paul D.; O'Sullivan, Orla; Stanton, Catherine; Hill, Cian J; Shanahan, Fergus; Plant, Barry J.; et al. (Biomed Central, 09/03/2017)
      Background Cystic Fibrosis (CF) is an autosomal recessive disease that affects the function of a number of organs, principally the lungs, but also the gastrointestinal tract. The manifestations of cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction in the gastrointestinal tract, as well as frequent antibiotic exposure, undoubtedly disrupts the gut microbiota. To analyse the effects of CF and its management on the microbiome, we compared the gut microbiota of 43 individuals with CF during a period of stability, to that of 69 non-CF controls using 454-pyrosequencing of the 16S rRNA gene. The impact of clinical parameters, including antibiotic therapy, on the results was also assessed. Results The CF-associated microbiome had reduced microbial diversity, an increase in Firmicutes and a reduction in Bacteroidetes compared to the non-CF controls. While the greatest number of differences in taxonomic abundances of the intestinal microbiota was observed between individuals with CF and the healthy controls, gut microbiota differences were also reported between people with CF when grouped by clinical parameters including % predicted FEV1 (measure of lung dysfunction) and the number of intravenous (IV) antibiotic courses in the previous 12 months. Notably, CF individuals presenting with severe lung dysfunction (% predicted FEV1 ≤ 40%) had significantly (p < 0.05) reduced gut microbiota diversity relative to those presenting with mild or moderate dysfunction. A significant negative correlation (−0.383, Simpson’s Diversity Index) was also observed between the number of IV antibiotic courses and gut microbiota diversity. Conclusions This is one of the largest single-centre studies on gut microbiota in stable adults with CF and demonstrates the significantly altered gut microbiota, including reduced microbial diversity seen in CF patients compared to healthy controls. The data show the impact that CF and it's management have on gut microbiota, presenting the opportunity to develop CF specific probiotics to minimise microbiota alterations.
    • The altered gut microbiota in adults with cystic fibrosis

      Burke, D.G.; Fouhy, Fiona; Harrison, M. J; Rea, Mary C.; Cotter, Paul D.; O'Sullivan, Orla; Stanton, Catherine; Hill, Cian J; Shanahan, Fergus; Plant, Barry J.; et al. (Biomed Central, 09/03/2017)
      Background Cystic Fibrosis (CF) is an autosomal recessive disease that affects the function of a number of organs, principally the lungs, but also the gastrointestinal tract. The manifestations of cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction in the gastrointestinal tract, as well as frequent antibiotic exposure, undoubtedly disrupts the gut microbiota. To analyse the effects of CF and its management on the microbiome, we compared the gut microbiota of 43 individuals with CF during a period of stability, to that of 69 non-CF controls using 454-pyrosequencing of the 16S rRNA gene. The impact of clinical parameters, including antibiotic therapy, on the results was also assessed. Results The CF-associated microbiome had reduced microbial diversity, an increase in Firmicutes and a reduction in Bacteroidetes compared to the non-CF controls. While the greatest number of differences in taxonomic abundances of the intestinal microbiota was observed between individuals with CF and the healthy controls, gut microbiota differences were also reported between people with CF when grouped by clinical parameters including % predicted FEV1 (measure of lung dysfunction) and the number of intravenous (IV) antibiotic courses in the previous 12 months. Notably, CF individuals presenting with severe lung dysfunction (% predicted FEV1 ≤ 40%) had significantly (p < 0.05) reduced gut microbiota diversity relative to those presenting with mild or moderate dysfunction. A significant negative correlation (−0.383, Simpson’s Diversity Index) was also observed between the number of IV antibiotic courses and gut microbiota diversity. Conclusions This is one of the largest single-centre studies on gut microbiota in stable adults with CF and demonstrates the significantly altered gut microbiota, including reduced microbial diversity seen in CF patients compared to healthy controls. The data show the impact that CF and it's management have on gut microbiota, presenting the opportunity to develop CF specific probiotics to minimise microbiota alterations.
    • Analysis of Health Benefits Conferred by Lactobacillus Species from Kefir

      Cotter, Paul D.; Slattery, Conor; O'Toole, Paul W.; Department of Agriculture, Food and Marine; Science Foundation Ireland; APC Microbiome Ireland; Vistamilk; Enterprise Ireland; European Union; 818368 (MDPI, 2019-06-01)
      Lactobacilli are among the most common microorganisms found in kefir; a traditional fermented milk beverage produced locally in many locations around the world. Kefir has been associated with a wide range of purported health benefits; such as antimicrobial activity; cholesterol metabolism; immunomodulation; anti-oxidative effects; anti-diabetic effects; anti-allergenic effects; and tumor suppression. This review critically examines and assesses these claimed benefits and mechanisms with regard to particular Lactobacillus species and/or strains that have been derived from kefir; as well as detailing further potential avenues for experimentation.
    • Antibiotic Resistance in the Gut Microbiota

      Fouhy, Fiona; Teagasc Walsh Fellowship Programme; Irish Research Council (2014)
      Antibiotic resistance is an increasing threat to our ability to treat infectious diseases. Thus, understanding the effects of antibiotics on the gut microbiota, as well as the potential for such populations to act as a reservoir for resistance genes, is imperative. This thesis set out to investigate the gut microbiota of antibiotic treated infants compared to untreated controls using high-throughput DNA sequencing. The results demonstrated the significant effects of antibiotic treatment, resulting in increased proportions of Proteobacteria and decreased proportions of Bifidobacterium. The species diversity of bifidobacteria was also reduced. This thesis also highlights the ability of the human gut microbiota to act as an antibiotic resistance reservoir. Using metagenomic DNA extracted from faecal samples from adult males, PCR was employed to demonstrate the prevalence and diversity of aminoglycoside and β-lactam resistance genes in the adult gut microbiota and highlighted the merits of the approach adopted. Using infant faecal samples, we constructed and screened a second fosmid metagenomic bank for the same families of resistance genes and demonstrated that the infant gut microbiota is also a reservoir for resistance genes. Using in silico analysis we highlighted the existence of putative aminoglycoside and β-lactam resistance determinants within the genomes of Bifidobacterium species. In the case of the β- lactamases, these appear to be mis-annotated. However, through homologous recombination-mediated insertional inactivation, we have demonstrated that the putative aminoglycoside resistance proteins do contribute to resistance. In additional studies, we investigated the effects of short bowel syndrome on infant gut microbiota, the immune system and bile acid metabolism. We also sequenced the microbiota of the human vermiform appendix, highlighting its complexity. Finally, this thesis demonstrated the strain specific nature of 2 different probiotic CLA-producing Bifidobacterium breve on the murine gut microbiota.
    • Antifungal Peptides as Therapeutic Agents

      Fernández de Ullivarri, Miguel; Arbulu, Sara; Garcia-Gutierrez, Enriqueta; Cotter, Paul D.; Science Foundation Ireland; European Union; Teagasc Walsh Fellowship Programme; SFI/12/RC/2273; 754535; 2015066 (Frontiers Media SA, 2020-03-17)
      Fungi have been used since ancient times in food and beverage-making processes and, more recently, have been harnessed for the production of antibiotics and in processes of relevance to the bioeconomy. Moreover, they are starting to gain attention as a key component of the human microbiome. However, fungi are also responsible for human infections. The incidence of community-acquired and nosocomial fungal infections has increased considerably in recent decades. Antibiotic resistance development, the increasing number of immunodeficiency- and/or immunosuppression-related diseases and limited therapeutic options available are triggering the search for novel alternatives. These new antifungals should be less toxic for the host, with targeted or broader antimicrobial spectra (for diseases of known and unknown etiology, respectively) and modes of actions that limit the potential for the emergence of resistance among pathogenic fungi. Given these criteria, antimicrobial peptides with antifungal properties, i.e., antifungal peptides (AFPs), have emerged as powerful candidates due to their efficacy and high selectivity. In this review, we provide an overview of the bioactivity and classification of AFPs (natural and synthetic) as well as their mode of action and advantages over current antifungal drugs. Additionally, natural, heterologous and synthetic production of AFPs with a view to greater levels of exploitation is discussed. Finally, we evaluate the current and potential applications of these peptides, along with the future challenges relating to antifungal treatments.
    • Antimicrobial antagonists against food pathogens; a bacteriocin perspective

      O'Connor, Paula M.; Ross, R Paul; Hill, Colin; Cotter, Paul D.; Science Foundation Ireland; 12/RC/2273 (Elsevier, 03/02/2015)
      Efforts are continuing to find novel bacteriocins with enhanced specificity and potency. Traditional plating techniques are still being used for bacteriocin screening studies, however, the availability of ever more bacterial genome sequences and the use of in silico gene mining tools have revealed novel bacteriocin gene clusters that would otherwise have been overlooked. Furthermore, synthetic biology and bioengineering-based approaches are allowing scientists to harness existing and novel bacteriocin gene clusters through expression in different hosts and by enhancing functionalities. The same principles apply to bacteriocin producing probiotic cultures and their application to control pathogens in the gut. We can expect that the recent developments on bacteriocins from Lactic Acid Bacteria (LAB) described here will contribute greatly to increased commercialisation of bacteriocins in food systems.
    • Antimicrobials for food and feed; a bacteriocin perspective

      O'Connor, Paula M.; Kuniyoshi, Tais M.; Oliveira, Ricardo PS; Hill, Colin; Ross, R Paul; Cotter, Paul D.; Science Foundation Ireland; São Paulo Research Foundation; 12/RC/2273; 2015/24777-0; et al. (Elsevier, 2020-01-20)
      Bacteriocins are natural antimicrobials that have been consumed via fermented foods for millennia and have been the focus of renewed efforts to identify novel bacteriocins, and their producing microorganisms, for use as food biopreservatives and other applications. Bioengineering bacteriocins or combining bacteriocins with multiple modes of action (hurdle approach) can enhance their preservative effect and reduces the incidence of antimicrobial resistance. In addition to their role as food biopreservatives, bacteriocins are gaining credibility as health modulators, due to their ability to regulate the gut microbiota, which is strongly associated with human wellbeing. Indeed the strengthening link between the gut microbiota and obesity make bacteriocins ideal alternatives to Animal Growth Promoters (AGP) in animal feed also. Here we review recent advances in bacteriocin research that will contribute to the development of functional foods and feeds as a consequence of roles in food biopreservation and human/animal health.
    • Antioxidant Activity and Phytochemical Characterization of Senecio clivicolus Wedd.

      Faraone, Immacolata; Rai, Dilip K.; Chiummiento, Lucia; Fernandez, Eloy; Choudhary, Alka; Prinzo, Flavio; Milella, Luigi; University of Basilicata; D.G.R. 1490 (MDPI, 2018-09-29)
      Antioxidant phytochemicals play a key role in oxidative stress control and in the prevention of related disorders, such as premature aging, degenerative diseases, diabetes, and cancer. The aim of this study was to investigate the potential antioxidant activity and the phytochemical profile of Senecio clivicolus Wedd., a perennial shrub, belonging to the Asteraceae family. Despite the wide interest of this family, this specie has not been investigated yet. S. clivicolus aerial parts were extracted with 96% ethanol. Then, the ethanol extract was fractionated by liquid/liquid extraction using an increasing solvents polarity. Total polyphenol and terpenoid contents were measured. Moreover, the antioxidant activity was evaluated by six different complementary in vitro assays. The Relative Antioxidant Capacity Index (RACI) was used to compare data obtained by different tests. The sample showing the highest RACI was subjected to characterization and quantitation of its phenolic composition using LC-MS/MS analysis. The ethyl acetate fraction, investigated by LC-MS/MS analysis, showed 30 compounds, most of them are chlorogenic acid and flavonoid derivatives. To the best of our knowledge, this is the first report about the evaluation of antioxidant activity and phytochemical profile of S. clivicolus, underlying the importance of this species as a source of health-promoting phytochemicals.
    • Antioxidant Activity and Phytochemical Characterization of Senecio clivicolus Wedd.

      Faraone, Immacolata; Rai, Dilip K.; Chiummiento, Lucia; Fernandez, Eloy; Choudhary, Alka; Prinzo, Flavio; Milella, Luigi; University of Basilicata; D.G.R. 1490 (MDPI, 2018-09-29)
      Antioxidant phytochemicals play a key role in oxidative stress control and in the prevention of related disorders, such as premature aging, degenerative diseases, diabetes, and cancer. The aim of this study was to investigate the potential antioxidant activity and the phytochemical profile of Senecio clivicolus Wedd., a perennial shrub, belonging to the Asteraceae family. Despite the wide interest of this family, this specie has not been investigated yet. S. clivicolus aerial parts were extracted with 96% ethanol. Then, the ethanol extract was fractionated by liquid/liquid extraction using an increasing solvents polarity. Total polyphenol and terpenoid contents were measured. Moreover, the antioxidant activity was evaluated by six different complementary in vitro assays. The Relative Antioxidant Capacity Index (RACI) was used to compare data obtained by different tests. The sample showing the highest RACI was subjected to characterization and quantitation of its phenolic composition using LC-MS/MS analysis. The ethyl acetate fraction, investigated by LC-MS/MS analysis, showed 30 compounds, most of them are chlorogenic acid and flavonoid derivatives. To the best of our knowledge, this is the first report about the evaluation of antioxidant activity and phytochemical profile of S. clivicolus, underlying the importance of this species as a source of health-promoting phytochemicals
    • Antioxidant, Antidiabetic, and Anticholinesterase Activities and Phytochemical Profile of Wedd.

      Faraone, Immacolata; Rai, Dilip K.; Russo, Daniela; Chiummiento, Lucia; Fernandez, Eloy; Choudhary, Alka; Milella, Luigi; Regione Basilicata; Fondazione Enrico Mattei DGR; Regional Project ALIMINTEGRA, GO NUTRIBAS; et al. (MDPI, 2019-08-03)
      Oxidative stress is involved in different diseases, such as diabetes and neurodegenerative diseases. The genus Azorella includes about 70 species of flowering plant species; most of them are commonly used as food and in particular as a tea infusion in the Andean region of South America in folk medicine to treat various chronic diseases. Azorella glabra Wedd. aerial parts were firstly analyzed for their in vitro antioxidant activity using different complementary assays. In particular, radical scavenging activity was tested against biological neutral radical DPPH; ferric reducing power and lipid peroxidation inhibitory capacity (FRAP and Beta-Carotene Bleaching tests) were also determined. The Relative Antioxidant Capacity Index (RACI) was used to compare data obtained by different assays. Then, the inhibitory ability of samples was investigated against α-amylase and α-glucosidase enzymes involved in diabetes and against acetylcholinesterase and butyrylcholinesterase enzymes considered as strategy for the treatment of Parkinson's or Alzheimer's diseases. Moreover, the phytochemical profile of the sample showing the highest RACI (1.35) and interesting enzymatic activities (IC50 of 163.54 ± 9.72 and 215.29 ± 17.10 μg/mL in α-glucosidase and acetylcholinesterase inhibition, respectively) was subjected to characterization and quantification of its phenolic composition using LC-MS/MS analysis. In fact, the ethyl acetate fraction derived from ethanol extract by liquid/liquid extraction showed 29 compounds, most of them are cinnamic acid derivatives, flavonoid derivatives, and a terpene. To the best of our knowledge, this is the first report about the evaluation of significant biological activities and phytochemical profile of A. glabra, an important source of health-promoting phytochemicals.
    • Antioxidant, Antidiabetic, and Anticholinesterase Activities and Phytochemical Profile of Azorella glabra Wedd

      Faraone, Immacolata; Rai, Dilip K.; Russo, Daniela; Chiummiento, Lucia; Fernandez, Eloy; Choudhary, Alka; Milella, Luigi; Regione Basilicata; Fondazione Enrico Mattei DGR; ALIMINTEGRA, GO NUTRIBAS; et al. (MDPI, 2019-08-03)
      Oxidative stress is involved in different diseases, such as diabetes and neurodegenerative diseases. The genus Azorella includes about 70 species of flowering plant species; most of them are commonly used as food and in particular as a tea infusion in the Andean region of South America in folk medicine to treat various chronic diseases. Azorella glabra Wedd. aerial parts were firstly analyzed for their in vitro antioxidant activity using different complementary assays. In particular, radical scavenging activity was tested against biological neutral radical DPPH; ferric reducing power and lipid peroxidation inhibitory capacity (FRAP and Beta-Carotene Bleaching tests) were also determined. The Relative Antioxidant Capacity Index (RACI) was used to compare data obtained by different assays. Then, the inhibitory ability of samples was investigated against α-amylase and α-glucosidase enzymes involved in diabetes and against acetylcholinesterase and butyrylcholinesterase enzymes considered as strategy for the treatment of Parkinson’s or Alzheimer’s diseases. Moreover, the phytochemical profile of the sample showing the highest RACI (1.35) and interesting enzymatic activities (IC50 of 163.54 ± 9.72 and 215.29 ± 17.10 μg/mL in α-glucosidase and acetylcholinesterase inhibition, respectively) was subjected to characterization and quantification of its phenolic composition using LC-MS/MS analysis. In fact, the ethyl acetate fraction derived from ethanol extract by liquid/liquid extraction showed 29 compounds, most of them are cinnamic acid derivatives, flavonoid derivatives, and a terpene. To the best of our knowledge, this is the first report about the evaluation of significant biological activities and phytochemical profile of A. glabra, an important source of health-promoting phytochemicals.
    • Aroma compound diacetyl suppresses glucagon-like peptide-1 production and secretion in STC-1 cells

      McCarthy, Triona; Bruen, Christine; O'Halloran, Fiona; Schellekens, Harriet; Kilcawley, Kieran; Cryan, John F.; Giblin, Linda; Teagasc Walsh Fellowship Programme; Enterprise Ireland; CC20080001 (Elsevier, 21/01/2017)
      Diacetyl is a volatile flavour compound that has a characteristic buttery aroma and is widely used in the flavour industry. The aroma of a food plays an important role in food palatability and thus intake. This study investigates the effect of diacetyl on the satiety hormone, glucagon-like peptide (GLP-1), using the enteroendocrine cell line, STC-1. Diacetyl decreased proglucagon mRNA and total GLP-1 from glucose stimulated STC-1 cells. This dampening effect on GLP-1 appears to be mediated by increasing intracellular cAMP levels, increasing synthesis of the G protein coupled receptor, GPR120, and its recruitment to the cell surface. Voltage gated Ca2+ channels, K+ATP channels and the α-gustducin taste pathway do not appear to be involved. These findings demonstrate that components contributing to food palatability suppress GLP-1. This ability of diacetyl to reduce satiety signals may contribute to overconsumption of some palatable foods.
    • Association of bovine leptin polymorphisms with energy output and energy storage traits in progeny tested Holstein-Friesian dairy cattle sires

      Giblin, Linda; Butler, Stephen T.; Kearney, Breda M.; Waters, Sinead M.; Callanan, Michael J.; Berry, Donagh P.; Department of Agriculture, Food and the Marine, Ireland; Irish Dairy Levy Research Trust; Teagasc Walsh Fellowship Programme; RSF-06-0353; et al. (Biomed Central, 29/07/2010)
      Background: Leptin modulates appetite, energy expenditure and the reproductive axis by signalling via its receptor the status of body energy stores to the brain. The present study aimed to quantify the associations between 10 novel and known single nucleotide polymorphisms in genes coding for leptin and leptin receptor with performance traits in 848 Holstein-Friesian sires, estimated from performance of up to 43,117 daughter-parity records per sire. Results: All single nucleotide polymorphisms were segregating in this sample population and none deviated (P > 0.05) from Hardy-Weinberg equilibrium. Complete linkage disequilibrium existed between the novel polymorphism LEP-1609, and the previously identified polymorphisms LEP-1457 and LEP-580. LEP-2470 associated (P < 0.05) with milk protein concentration and calf perinatal mortality. It had a tendency to associate with milk yield (P < 0.1). The G allele of LEP-1238 was associated (P < 0.05) with reduced milk fat concentration, reduced milk protein concentration, longer gestation length and tended to associate (P < 0.1) with an increase in calving difficulty, calf perinatal mortality and somatic cells in the milk. LEP-963 exhibited an association (P < 0.05) with milk fat concentration, milk protein concentration, calving difficulty and gestation length. It also tended to associate with milk yield (P < 0.1). The R25C SNP associated (P < 0.05) with milk fat concentration, milk protein concentration, calving difficulty and length of gestation. The T allele of the Y7F SNP significantly associated with reduced angularity (P < 0.01) and reduced milk protein yield (P < 0.05). There was also a tendency (P < 0.1) for Y7F to associate with increased body condition score, reduced milk yield and shorter gestation (P < 0.1). A80V associated with reduced survival in the herd (P < 0.05). Conclusions Several leptin polymorphisms (LEP-2470, LEP-1238, LEP-963, Y7F and R25C) associated with the energetically expensive process of lactogenesis. Only SNP Y7F associated with energy storage. Associations were also observed between leptin polymorphisms and calving difficulty, gestation length and calf perinatal mortality. The lack of an association between the leptin variants investigated with calving interval in this large data set would question the potential importance of these leptin variants, or indeed leptin, in selection for improved fertility in the Holstein-Friesian dairy cow.
    • Atypical Listeria innocua strains possess an intact LIPI-3

      Clayton, Evelyn M; Daly, Karen M.; Guinane, Caitriona M.; Hill, Colin; Cotter, Paul D.; Ross, R Paul; Enterprise Ireland; Science Foundation Ireland; 06/IN.1/B98; 10/IN.1/B3027 (Biomed Central, 08/03/2014)
      Background: Listeria monocytogenes is a food-borne pathogen which is the causative agent of listeriosis and can be divided into three evolutionary lineages I, II and III. While all strains possess the well established virulence factors associated with the Listeria pathogenicity island I (LIPI-1), lineage I strains also possess an additional pathogenicity island designated LIPI-3 which encodes listeriolysin S (LLS), a post-translationally modified cytolytic peptide. Up until now, this pathogenicity island has been identified exclusively in a subset of lineage I isolates of the pathogen Listeria monocytogenes. Results: In total 64 L. innocua strains were screened for the presence of LIPI-3. Here we report the identification of an intact LIPI-3 in 11 isolates of L. innocua and the remnants of the cluster in several others. Significantly, we can reveal that placing the L. innocua lls genes under the control of a constitutive promoter results in a haemolytic phenotype, confirming that the cluster is capable of encoding a functional haemolysin. Conclusions: Although the presence of the LIPI-3 gene cluster is confined to lineage I isolates of L. monocytogenes, a corresponding gene cluster or its remnants have been identified in many L. innocua strains.
    • Bacterial conjugated linoleic acid production and their applications

      Yang, Bo; Gao, He; Stanton, Catherine; Ross, R Paul; Zhang, Hao; Chen, Yong Q.; Chen, Haiqin; Chen, Wei; National Natural Science Foundation of China; National Natural Science Foundation of Jiangsu Province; et al. (Elsevier, 2017-09-07)
      Conjugated linoleic acid (CLA) has been shown to exert various potential physiological properties including anti-carcinogenic, anti-obesity, anti-cardiovascular and anti-diabetic activities, and consequently has been considered as a promising food supplement. Bacterial biosynthesis of CLA is an attractive approach for commercial production due to its high isomer-selectivity and convenient purification process. Many bacterial species have been reported to convert free linoleic acid (LA) to CLA, hitherto only the precise CLA-producing mechanisms in Propionibacterium acnes and Lactobacillus plantarum have been illustrated completely, prompting the development of recombinant technology used in CLA production. The purpose of the article is to review the bacterial CLA producers as well as the recent progress on describing the mechanism of microbial CLA-production. Furthermore, the advances and potential in the heterologous expression of CLA genetic determinants will be presented.