• Antioxidant Activity and Phytochemical Characterization of Senecio clivicolus Wedd.

      Faraone, Immacolata; Rai, Dilip K.; Chiummiento, Lucia; Fernandez, Eloy; Choudhary, Alka; Prinzo, Flavio; Milella, Luigi; University of Basilicata; D.G.R. 1490 (MDPI, 2018-09-29)
      Antioxidant phytochemicals play a key role in oxidative stress control and in the prevention of related disorders, such as premature aging, degenerative diseases, diabetes, and cancer. The aim of this study was to investigate the potential antioxidant activity and the phytochemical profile of Senecio clivicolus Wedd., a perennial shrub, belonging to the Asteraceae family. Despite the wide interest of this family, this specie has not been investigated yet. S. clivicolus aerial parts were extracted with 96% ethanol. Then, the ethanol extract was fractionated by liquid/liquid extraction using an increasing solvents polarity. Total polyphenol and terpenoid contents were measured. Moreover, the antioxidant activity was evaluated by six different complementary in vitro assays. The Relative Antioxidant Capacity Index (RACI) was used to compare data obtained by different tests. The sample showing the highest RACI was subjected to characterization and quantitation of its phenolic composition using LC-MS/MS analysis. The ethyl acetate fraction, investigated by LC-MS/MS analysis, showed 30 compounds, most of them are chlorogenic acid and flavonoid derivatives. To the best of our knowledge, this is the first report about the evaluation of antioxidant activity and phytochemical profile of S. clivicolus, underlying the importance of this species as a source of health-promoting phytochemicals.
    • Antioxidant Activity and Phytochemical Characterization of Senecio clivicolus Wedd.

      Faraone, Immacolata; Rai, Dilip K.; Chiummiento, Lucia; Fernandez, Eloy; Choudhary, Alka; Prinzo, Flavio; Milella, Luigi; University of Basilicata; D.G.R. 1490 (MDPI, 2018-09-29)
      Antioxidant phytochemicals play a key role in oxidative stress control and in the prevention of related disorders, such as premature aging, degenerative diseases, diabetes, and cancer. The aim of this study was to investigate the potential antioxidant activity and the phytochemical profile of Senecio clivicolus Wedd., a perennial shrub, belonging to the Asteraceae family. Despite the wide interest of this family, this specie has not been investigated yet. S. clivicolus aerial parts were extracted with 96% ethanol. Then, the ethanol extract was fractionated by liquid/liquid extraction using an increasing solvents polarity. Total polyphenol and terpenoid contents were measured. Moreover, the antioxidant activity was evaluated by six different complementary in vitro assays. The Relative Antioxidant Capacity Index (RACI) was used to compare data obtained by different tests. The sample showing the highest RACI was subjected to characterization and quantitation of its phenolic composition using LC-MS/MS analysis. The ethyl acetate fraction, investigated by LC-MS/MS analysis, showed 30 compounds, most of them are chlorogenic acid and flavonoid derivatives. To the best of our knowledge, this is the first report about the evaluation of antioxidant activity and phytochemical profile of S. clivicolus, underlying the importance of this species as a source of health-promoting phytochemicals
    • Antioxidant, Antidiabetic, and Anticholinesterase Activities and Phytochemical Profile of Wedd.

      Faraone, Immacolata; Rai, Dilip K.; Russo, Daniela; Chiummiento, Lucia; Fernandez, Eloy; Choudhary, Alka; Milella, Luigi; Regione Basilicata; Fondazione Enrico Mattei DGR; Regional Project ALIMINTEGRA, GO NUTRIBAS; et al. (MDPI, 2019-08-03)
      Oxidative stress is involved in different diseases, such as diabetes and neurodegenerative diseases. The genus Azorella includes about 70 species of flowering plant species; most of them are commonly used as food and in particular as a tea infusion in the Andean region of South America in folk medicine to treat various chronic diseases. Azorella glabra Wedd. aerial parts were firstly analyzed for their in vitro antioxidant activity using different complementary assays. In particular, radical scavenging activity was tested against biological neutral radical DPPH; ferric reducing power and lipid peroxidation inhibitory capacity (FRAP and Beta-Carotene Bleaching tests) were also determined. The Relative Antioxidant Capacity Index (RACI) was used to compare data obtained by different assays. Then, the inhibitory ability of samples was investigated against α-amylase and α-glucosidase enzymes involved in diabetes and against acetylcholinesterase and butyrylcholinesterase enzymes considered as strategy for the treatment of Parkinson's or Alzheimer's diseases. Moreover, the phytochemical profile of the sample showing the highest RACI (1.35) and interesting enzymatic activities (IC50 of 163.54 ± 9.72 and 215.29 ± 17.10 μg/mL in α-glucosidase and acetylcholinesterase inhibition, respectively) was subjected to characterization and quantification of its phenolic composition using LC-MS/MS analysis. In fact, the ethyl acetate fraction derived from ethanol extract by liquid/liquid extraction showed 29 compounds, most of them are cinnamic acid derivatives, flavonoid derivatives, and a terpene. To the best of our knowledge, this is the first report about the evaluation of significant biological activities and phytochemical profile of A. glabra, an important source of health-promoting phytochemicals.
    • Antioxidant, Antidiabetic, and Anticholinesterase Activities and Phytochemical Profile of Azorella glabra Wedd

      Faraone, Immacolata; Rai, Dilip K.; Russo, Daniela; Chiummiento, Lucia; Fernandez, Eloy; Choudhary, Alka; Milella, Luigi; Regione Basilicata; Fondazione Enrico Mattei DGR; ALIMINTEGRA, GO NUTRIBAS; et al. (MDPI, 2019-08-03)
      Oxidative stress is involved in different diseases, such as diabetes and neurodegenerative diseases. The genus Azorella includes about 70 species of flowering plant species; most of them are commonly used as food and in particular as a tea infusion in the Andean region of South America in folk medicine to treat various chronic diseases. Azorella glabra Wedd. aerial parts were firstly analyzed for their in vitro antioxidant activity using different complementary assays. In particular, radical scavenging activity was tested against biological neutral radical DPPH; ferric reducing power and lipid peroxidation inhibitory capacity (FRAP and Beta-Carotene Bleaching tests) were also determined. The Relative Antioxidant Capacity Index (RACI) was used to compare data obtained by different assays. Then, the inhibitory ability of samples was investigated against α-amylase and α-glucosidase enzymes involved in diabetes and against acetylcholinesterase and butyrylcholinesterase enzymes considered as strategy for the treatment of Parkinson’s or Alzheimer’s diseases. Moreover, the phytochemical profile of the sample showing the highest RACI (1.35) and interesting enzymatic activities (IC50 of 163.54 ± 9.72 and 215.29 ± 17.10 μg/mL in α-glucosidase and acetylcholinesterase inhibition, respectively) was subjected to characterization and quantification of its phenolic composition using LC-MS/MS analysis. In fact, the ethyl acetate fraction derived from ethanol extract by liquid/liquid extraction showed 29 compounds, most of them are cinnamic acid derivatives, flavonoid derivatives, and a terpene. To the best of our knowledge, this is the first report about the evaluation of significant biological activities and phytochemical profile of A. glabra, an important source of health-promoting phytochemicals.
    • Assessment of RNAlater® as a Potential Method to Preserve Bovine Muscle Proteins Compared with Dry Ice in a Proteomic Study

      Zhu, Yao; Mullen, Anne Maria; Rai, Dilip K.; Kelly, Alan L.; Sheehan, David; Cafferky, Jamie; Hamill, Ruth; Teagasc Walsh Fellowship Programme; NFFQ0017 (MDPI, 2019-02-05)
      RNAlater® is regarded as a potential preservation method for proteins, while its effect on bovine muscle proteins has rarely been evaluated. Bovine muscle protein samples (n = 12) collected from three tender (Warner–Bratzler shear force: 30.02–31.74 N) and three tough (Warner–Bratzler shear force: 54.12–66.25 N) Longissimus thoracis et lumborum (LTL) samples, preserved using two different sampling preservation methods (RNAlater® and dry ice), at two post mortem time points (day 0 and day 14), were characterized using one-dimensional electrophoresis. Fourteen bands with molecular weights ranging from 15 to 250 kDa were verified, both in the dry ice and RNAlater® storage groups, at each time point, using image analysis. A shift from high to low molecular weight fragments, between day 0 and day 14, indicated proteolysis of the muscle proteins during post mortem storage. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses and database searching resulted in the identification of 10 proteins in four bands. Protein profiles of muscle preserved in RNAlater® were similar to those of muscle frozen on dry ice storage, both at day 0 and day 14. The results demonstrate that RNAlater® could be a simple and efficient way to preserve bovine muscle proteins for bovine muscle proteomic studies
    • Brans of the roller-milled barley fractions rich in polyphenols and health-promoting lipophilic molecules

      Gangopadhyay, Nirupama; Harrison, Sabine M; Brunton, Nigel P; Hidalgo-Ruiz, José L; Gallagher, Eimear; Rai, Dilip K.; Department of Agriculture, Food and the Marine; 11/SF/317 (Elsevier, 2018-09-01)
      Three different roller-milled fractions namely bran, middlings, and flour of five commonly grown Irish barley varieties were investigated for the presence of β-glucan, polyphenols, and health-promoting lipophilic molecules. β-glucan was predominantly located in barley middlings. Polyphenols, as indicated by total phenolic content and the antioxidant activities, were abundant in the outermost bran fractions of barley. Similarly the health-promoting lipophilic molecules including phytosterols, unsaturated fatty acids, and tocols were most abundant in the barley bran fraction. However, the distribution of individual polyphenols and lipophilic compounds varied within the grain; for example ferulic acid and procyainidin C were not detected in flour fraction. Principal component analysis (PCA) clearly indicated a higher distribution of most bioactive molecules in bran as compared to middlings and flour fractions. The PCA also established possible correlations between the five barley varieties and their fractions based on their clustering in the plot.
    • Current Status and Future Prospects of Marine Natural Products (MNPs) as Antimicrobials

      Choudhary, Alka; Naughton, Lynn; Montánchez, Itxaso; Dobson, Alan; Rai, Dilip K.; Department of Agriculture, Food and the Marine; 11/F/009 (MDPI, 2017-08-28)
      The marine environment is a rich source of chemically diverse, biologically active natural products, and serves as an invaluable resource in the ongoing search for novel antimicrobial compounds. Recent advances in extraction and isolation techniques, and in state-of-the-art technologies involved in organic synthesis and chemical structure elucidation, have accelerated the numbers of antimicrobial molecules originating from the ocean moving into clinical trials. The chemical diversity associated with these marine-derived molecules is immense, varying from simple linear peptides and fatty acids to complex alkaloids, terpenes and polyketides, etc. Such an array of structurally distinct molecules performs functionally diverse biological activities against many pathogenic bacteria and fungi, making marine-derived natural products valuable commodities, particularly in the current age of antimicrobial resistance. In this review, we have highlighted several marine-derived natural products (and their synthetic derivatives), which have gained recognition as effective antimicrobial agents over the past five years (2012–2017). These natural products have been categorized based on their chemical structures and the structure-activity mediated relationships of some of these bioactive molecules have been discussed. Finally, we have provided an insight into how genome mining efforts are likely to expedite the discovery of novel antimicrobial compounds.
    • Dietary Compounds Influencing the Sensorial, Volatile and Phytochemical Properties of Bovine Milk

      Clarke, Holly J.; Griffin, Carol; Rai, Dilip K.; O’Callaghan, Tom F.; O’Sullivan, Maurice G.; Kerry, Joseph P.; Kilcawley, Kieran N.; Teagasc Walsh Fellowship Programme; 2016071 (MDPI AG, 2019-12-19)
      The main aim of this study was to evaluate the volatile profile, sensory perception, and phytochemical content of bovine milk produced from cows fed on three distinct feeding systems, namely grass (GRS), grass/clover (CLV), and total mixed ration (TMR). Previous studies have identified that feed type can influence the sensory perception of milk directly via the transfer of volatile aromatic compounds, or indirectly by the transfer of non-volatile substrates that act as precursors for volatile compounds. In the present study, significant differences were observed in the phytochemical profile of the different feed and milk samples. The isoflavone formonoetin was significantly higher in CLV feed samples, but higher in raw GRS milk, while other smaller isoflavones, such as daidzein, genistein, and apigenin were highly correlated to raw CLV milk. This suggests that changes in isoflavone content and concentration in milk relate to diet, but also to metabolism in the rumen. This study also found unique potential volatile biomarkers in milk (dimethyl sulfone) related to feeding systems, or significant differences in the concentration of others (toluene, p-cresol, ethyl and methyl esters) based on feeding systems. TMR milk scored significantly higher for hay-like flavor and white color, while GRS and CLV milk scored significantly higher for a creamy color. Milk samples were easily distinguishable by their volatile profile based on feeding system, storage time, and pasteurization.
    • Effect of Drying Methods on the Steroidal Alkaloid Content of Potato Peels, Shoots and Berries

      Brunton, Nigel; Hossain, Mohammad Billal; Rai, Dilip K.; Department of Agriculture, Food and the Marine; 11F/050 (MDPI, 2016-03-25)
      The present study has found that dried potato samples yielded significantly higher levels of steroidal alkaloids such as α-solanine and α-chaconine than the corresponding fresh samples, as determined by the UPLC-MS/MS technique. Among the drying techniques used, air drying had the highest effect on steroidal alkaloid contents, followed by freeze drying and vacuum oven drying. There was no significant difference between the freeze dried and vacuum oven dried samples in their α-chaconine contents. However, freeze dried potato shoots and berries had significantly higher α-solanine contents (825 µg/g dry weight (DW) in shoots and 2453 µg/g DW in berries) than the vacuum oven dried ones (325 µg/g dry weight (DW) in shoots and 2080 µg/g DW in berries). The kinetics of steroidal alkaloid contents of potato shoots during air drying were monitored over a period of 21 days. Both α-solanine and α-chaconine content increased to their maximum values, 875 µg/g DW and 3385 µg/g DW, respectively, after 7 days of drying. The steroidal alkaloid contents of the shoots decreased significantly at day 9, and then remained unchanged until day 21. In line with the potato shoots, air dried potato tuber peels also had higher steroidal alkaloid content than the freeze dried and vacuum oven dried samples. However, a significant decrease of steroidal alkaloid content was observed in air dried potato berries, possibly due to degradation during slicing of the whole berries prior to air drying. Remarkable variation in steroidal alkaloid contents among different tissue types of potato plants was observed with the potato flowers having the highest content.
    • The Effect of High Pressure Processing on Antioxidant Activity of Irish Potato Cultivars

      Tsikrika, Konstantina; Rai, Dilip K.; Department of Agriculture, Food and the Marine; 17/F/299 (MDPI, 2019-04-16)
      The effect of High Pressure Processing (HPP) on Irish potato cultivars’ antioxidant activity (AOA) was examined. High Pressure Processing at 600 MPa for 3 min was applied to two coloured (Rooster and Kerr’s Pink) and two white (Saxon and Gemson) Irish potato varieties. Antioxidant activity was assayed spectrophotometrically by ferric reducing antioxidant power and diphenyl-1-picrylhydrazyl methods. No statistically significant (p ≥ 0.05) change in antioxidant activity was observed in both the AOA methods irrespective of the HPP treatments, although a slight increase in the activity was noted in the majority of the HPP treated samples. This implies that HPP treatment has little role in improving the functional qualities, and can be tailored to improve the quality and safety of the commonly consumed potatoes.
    • The Effect of High Pressure Processing on Polyphenol Oxidase Activity, Phytochemicals and Proximate Composition of Irish Potato Cultivars

      Tsikrika, Konstantina; O’Brien, Nora; Rai, Dilip K.; Department of Agriculture, Food and Marine; 17/F/299 (MDPI AG, 2019-10-19)
      Polyphenol oxidase (PPO) activity, proximate composition, and phytochemicals were determined in four common Irish potato cultivars following a high pressure processing (HPP) at 600 MPa for 3 min. PPO activity was significantly (p < 0.05) lower in all HPP treated samples, while the overall proximate composition was not affected. The total phenolic content was significantly higher in the HPP treated samples. Chlorogenic acid levels significantly decreased with simultaneous increase of caffeic acid and p-coumaric acid levels upon HPP treatment. No significant changes were observed in rutin and ferulic acid levels, although their levels varied, depending on the potato cultivars, while the levels of cytotoxic glycoalkaloids (α-solanine and α-chaconine) remained unaltered.
    • The effect of Pulsed Electric Field as a pre-treatment step in Ultrasound Assisted Extraction of phenolic compounds from fresh rosemary and thyme by-products, Innovative Food Science and Emerging Technologies

      Tzima, Katerina; Brunton, Nigel P.; Lyng, James G.; Frontuto, Daniele; Rai, Dilip K.; Teagasc Walsh Fellowship Programme; 2016038 (Elsevier, 2021-02-22)
      Emerging extraction techniques, including pulsed electric field (PEF) and ultrasound (US), are attracting considerable interest in the recovery of bioactives. Though, limited work has focused on PEF application as pre-treatment for US assisted extraction to enhance the release of phenolics from herbs. Hence, the present study investigated the use of an optimized PEF pre-treatment to enhance the recovery of phenolics from fresh rosemary and thyme by-products in a subsequent US assisted extraction step. Total phenolic content (TPC), 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and ferric reducing antioxidant power (FRAP) were assessed as an index of extraction efficacy. Qualitative and quantitative analyses were performed through liquid chromatography-mass spectrometry analyses to evaluate the influence of the methods on individual phenolic compounds and the formation of potential derivatives. The results indicated that in a number of cases PEF pre-treatment enhanced (p < 0.05) the recovery of phenolic compounds and antioxidant capacity compared to US individually.
    • Enrichment and Assessment of the Contributions of the Major Polyphenols to the Total Antioxidant Activity of Onion Extracts: A Fractionation by Flash Chromatography Approach

      Hossain, Mohammad Billal; Lebelle, Justine; Birsan, Rares; Rai, Dilip K.; Department of Agriculture, Food and the Marine; FIRM 06/NITAFRC/6 (MDPI AG, 2018-11-27)
      The present study extensively fractionated crude red onion extract in order to identify the polyphenols which contributed most in the total antioxidant capacity of the onion extract using a flash chromatography system. The flash separations produced 70 fractions which were tested for their total phenol content, total flavonoid content, and antioxidant capacities as measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays. Out of these 70 fractions, four fractions which were representatives of the four major peaks of the flash chromatograms, were further analysed for their constituent polyphenols using liquid chromatography tandem mass spectrometry (LC-MS/MS). The main contributor of onion antioxidant capacity is quercetin glycoside followed by quercetin aglycone although quercetin aglycone had higher antioxidant capacity than its glycosidic counterparts. High abundance of quercetin glycosides such as quercetin-3,4′-diglucoside and quercetin-4′-glucoside had compensated for their relatively low antioxidant capacities. A Higher degree of glycosylation resulted in lower antioxidant capacity. The fractionation approach also contributed in enrichment of the onion antioxidant polyphenols. A >9 folds enrichment was possible by discarding the early fractions (fractions 1–15) which contained the main bulk of the extracts, predominantly sugars.
    • Enrichment and Assessment of the Contributions of the Major Polyphenols to the Total Antioxidant Activity of Onion Extracts: A Fractionation by Flash Chromatography Approach

      Hossain, Mohammad Billal; Lebelle, Justine; Birsan, Rares; Rai, Dilip K.; Department of Agriculture, Food and the Marine; 06/NITAFRC/6 (MDPI, 2018-11-27)
      The present study extensively fractionated crude red onion extract in order to identify the polyphenols which contributed most in the total antioxidant capacity of the onion extract using a flash chromatography system. The flash separations produced 70 fractions which were tested for their total phenol content, total flavonoid content, and antioxidant capacities as measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays. Out of these 70 fractions, four fractions which were representatives of the four major peaks of the flash chromatograms, were further analysed for their constituent polyphenols using liquid chromatography tandem mass spectrometry (LC-MS/MS). The main contributor of onion antioxidant capacity is quercetin glycoside followed by quercetin aglycone although quercetin aglycone had higher antioxidant capacity than its glycosidic counterparts. High abundance of quercetin glycosides such as quercetin-3,4′-diglucoside and quercetin-4′-glucoside had compensated for their relatively low antioxidant capacities. A Higher degree of glycosylation resulted in lower antioxidant capacity. The fractionation approach also contributed in enrichment of the onion antioxidant polyphenols. A >9 folds enrichment was possible by discarding the early fractions (fractions 1–15) which contained the main bulk of the extracts, predominantly sugars.
    • Enrichment and Assessment of the Contributions of the Major Polyphenols to the Total Antioxidant Activity of Onion Extracts: A Fractionation by Flash Chromatography Approach

      Hossain, Mohammad Billal; Lebelle, Justine; Birsan, Rares; Rai, Dilip K.; Department of Agriculture, Food and the Marine; FIRM 06/NITAFRC/6 (MDPI AG, 2018-11-27)
      The present study extensively fractionated crude red onion extract in order to identify the polyphenols which contributed most in the total antioxidant capacity of the onion extract using a flash chromatography system. The flash separations produced 70 fractions which were tested for their total phenol content, total flavonoid content, and antioxidant capacities as measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays. Out of these 70 fractions, four fractions which were representatives of the four major peaks of the flash chromatograms, were further analysed for their constituent polyphenols using liquid chromatography tandem mass spectrometry (LC-MS/MS). The main contributor of onion antioxidant capacity is quercetin glycoside followed by quercetin aglycone although quercetin aglycone had higher antioxidant capacity than its glycosidic counterparts. High abundance of quercetin glycosides such as quercetin-3,4′-diglucoside and quercetin-4′-glucoside had compensated for their relatively low antioxidant capacities. A Higher degree of glycosylation resulted in lower antioxidant capacity. The fractionation approach also contributed in enrichment of the onion antioxidant polyphenols. A >9 folds enrichment was possible by discarding the early fractions (fractions 1–15) which contained the main bulk of the extracts, predominantly sugars.
    • Enrichment and Assessment of the Contributions of the Major Polyphenols to the Total Antioxidant Activity of Onion Extracts: A Fractionation by Flash Chromatography Approach

      Hossain, Mohammad Billal; Lebelle, Justine; Birsan, Rares; Rai, Dilip K.; Department of Agriculture, Food and the Marine; FIRM 06/NITAFRC/6 (MDPI AG, 2018-11-27)
      The present study extensively fractionated crude red onion extract in order to identify the polyphenols which contributed most in the total antioxidant capacity of the onion extract using a flash chromatography system. The flash separations produced 70 fractions which were tested for their total phenol content, total flavonoid content, and antioxidant capacities as measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays. Out of these 70 fractions, four fractions which were representatives of the four major peaks of the flash chromatograms, were further analysed for their constituent polyphenols using liquid chromatography tandem mass spectrometry (LC-MS/MS). The main contributor of onion antioxidant capacity is quercetin glycoside followed by quercetin aglycone although quercetin aglycone had higher antioxidant capacity than its glycosidic counterparts. High abundance of quercetin glycosides such as quercetin-3,4′-diglucoside and quercetin-4′-glucoside had compensated for their relatively low antioxidant capacities. A Higher degree of glycosylation resulted in lower antioxidant capacity. The fractionation approach also contributed in enrichment of the onion antioxidant polyphenols. A >9 folds enrichment was possible by discarding the early fractions (fractions 1–15) which contained the main bulk of the extracts, predominantly sugars.
    • Exploring the effects of pulsed electric field processing parameters on polyacetylene extraction from carrot slices

      Aguilo-Aguayo, Ingrid; Abreu, Corina; Hossain, Mohammad Billal; Altisent, Rosa; Brunton, Nigel; Viñas, Inmaculada; Rai, Dilip K.; Department of Agriculture, Food and the Marine; Generalitat of Catalonia; 06TNITAFRC6; et al. (MDPI, 2015-03-02)
      The effects of various pulsed electric field (PEF) parameters on the extraction of polyacetylenes from carrot slices were investigated. Optimised conditions with regard to electric field strength (1–4 kV/cm), number of pulses (100–1500), pulse frequency (10–200 Hz) and pulse width (10–30 μs) were identified using response surface methodology (RSM) to maximise the extraction of falcarinol (FaOH), falcarindiol (FaDOH) and falcarindiol-3-acetate (FaDOAc) from carrot slices. Data obtained from RSM and experiments fitted significantly (p < 0.0001) the proposed second-order response functions with high regression coefficients (R2) ranging from 0.82 to 0.75. Maximal FaOH (188%), FaDOH (164.9%) and FaDOAc (166.8%) levels relative to untreated samples were obtained from carrot slices after applying PEF treatments at 4 kV/cm with 100 number of pulses of 10 μs at 10 Hz. The predicted values from the developed quadratic polynomial equation were in close agreement with the actual experimental values with low average mean deviations (E%) ranging from 0.68% to 3.58%.
    • Fate of beta-glucan, polyphenols and lipophilic compounds in baked crackers fortified with different barley-milled fractions

      Gangopadhyay, Nirupama; O'Shea, Norah; Brunton, Nigel P.; Gallagher, Eimear; Harrison, Sabine M.; Rai, Dilip K.; Department of Agriculture, Food and the Marine; FIRM 11/SF/317 (Elsevier BV, 2019-07-18)
      Four types of crackers were prepared, whereby wheat flour was substituted with different percentages of barley flour and bran. These formulations were compared to a 100% wheat flour (control) cracker with respect to β-glucan, polyphenols and lipophilic bioactives. Incorporation of barley fractions enriched the β-glucan, and phenolic content, as well as in vitro antioxidant capacities of the crackers. However, some polyphenols including procyanidin C and ferulic acid could not be detected in the crackers owing to the probable degradation of these compounds during baking. The β-glucan, flavanols (catechin and procyanidin B), as well as fatty acids and sterols were least affected; while the α-tocotrienols showed degradation following the baking process. Overall, barley fractions can serve as valued ingredients for enhancing the health-salutary components of fortified crackers or the products thereof.
    • Generation of Bioactive Hydrolysates and Peptides from Bovine Hemoglobin with In Vitro Renin, Angiotensin-I-Converting Enzyme and Dipeptidyl Peptidase-IV Inhibitory Activities

      Lafarga, Tomas; Rai, Dilip K.; O'Connor, Paula M.; Hayes, Maria; Teagasc Walsh Fellowship Programme; Department of Agriculture, Food and the Marine; 11/F/043 (Wiley, 02/03/2016)
      Bovine hemoglobin was selected for use in the generation of bioactive hydrolysates with potential for use as functional food ingredients for prevention of disorders such as hypertension, obesity and diabetes. Bovine hemoglobin was isolated and hydrolyzed with papain, which was selected using in silico analysis. The generated hydrolysate was enriched by ultrafiltration and further purified by high performance liquid chromatography. A number of peptides were identified using de novo peptide sequencing and these peptides were chemically synthesized to confirm their bioactivity in vitro. Three multifunctional peptides with both, ACE-I and renin-inhibitory properties and one peptide with ACE-I-inhibiting properties were identified. These included the di-peptide HR with ACE-I and renin IC50 values of 0.19 and 7.09 mM, respectively. The generated papain hydrolysate of bovine hemoglobin not only inhibited the enzymes ACE-I and renin but also the enzyme DPP-IV, which has been linked to type-2 diabetes.
    • Heat-induced Maillard reaction of the tripeptide IPP and ribose: Structural characterization and implication on bioactivity

      Jiang, Zhanmei; Rai, Dilip K.; O'Connor, Paula M.; Brodkorb, Andre; National Natural Science Foundation of China; Innovative Research Team of Higher Education of Heilongjiang Province (Elsevier, 28/09/2012)
      Maillard reaction products (MRPs) were prepared from aqueous model mixtures containing 60 g L− 1 ribose and 30 g L− 1 of the bioactive tripeptide IPP (Ile-Pro-Pro), heated at 98 °C. MRP and associated reactions with changes in IPP were observed within one hour of heat-treatment. The pH of MRPs decreased significantly during the heat treatment of IPP–ribose mixtures from 9.0 to 7.6 after one hour. The amino group content, IPP and ribose concentration decreased significantly during heat treatment. The fluorescence intensity of the IPP–ribose MRPs reached the maximum within 2 h. Modification of the UV/vis spectra for IPP–ribose MRPs was mainly due to a condensation reaction of IPP with ribose. Compounds with molecular weight between 300 and 650 Da were dominant while compounds smaller than 250 Da were also produced during the reactions, as characterized by size exclusion chromatography. Mass spectrometry revealed that IPP was conjugated to ribose at the N-terminal (m/z of 458.3) upon heat-treatment. The presence of ribose also promoted peptide degradation to dehydrated IP (m/z of 211.1). IPP–ribose MRPs lost the known angiotensin-I-converting enzyme (ACE) inhibitory activity of IPP; however, strong antioxidant properties were detected.