• Bioengineering Lantibiotics for Therapeutic Success

      Field, Des; Cotter, Paul D.; Hill, Colin; Ross, R Paul; Science Foundation Ireland; TIDA14/TIDA/2286; 10/IN.1/B3027; 11/PI/1137; SFI/12/RC/2273 (Frontiers Media S. A., 2015-11)
      Several examples of highly modified antimicrobial peptides have been described. While many such peptides are non-ribosomally synthesized, ribosomally synthesized equivalents are being discovered with increased frequency. Of the latter group, the lantibiotics continue to attract most attention. In the present review, we discuss the implementation of in vivo and in vitro engineering systems to alter, and even enhance, the antimicrobial activity, antibacterial spectrum and physico-chemical properties, including heat stability, solubility, diffusion and protease resistance, of these compounds. Additionally, we discuss the potential applications of these lantibiotics for use as therapeutics.
    • Biotechnological applications of functional metagenomics in the food and pharmaceutical industries

      Coughlan, Laura M.; Cotter, Paul D.; Hill, Colin; Alvarez-Ordonez, Avelino; Science Foundation Ireland; 13/SIRG/2157 (Frontiers Media S. A., 30/06/2015)
      Microorganisms are found throughout nature, thriving in a vast range of environmental conditions. The majority of them are unculturable or difficult to culture by traditional methods. Metagenomics enables the study of all microorganisms, regardless of whether they can be cultured or not, through the analysis of genomic data obtained directly from an environmental sample, providing knowledge of the species present, and allowing the extraction of information regarding the functionality of microbial communities in their natural habitat. Function-based screenings, following the cloning and expression of metagenomic DNA in a heterologous host, can be applied to the discovery of novel proteins of industrial interest encoded by the genes of previously inaccessible microorganisms. Functional metagenomics has considerable potential in the food and pharmaceutical industries, where it can, for instance, aid (i) the identification of enzymes with desirable technological properties, capable of catalyzing novel reactions or replacing existing chemically synthesized catalysts which may be difficult or expensive to produce, and able to work under a wide range of environmental conditions encountered in food and pharmaceutical processing cycles including extreme conditions of temperature, pH, osmolarity, etc; (ii) the discovery of novel bioactives including antimicrobials active against microorganisms of concern both in food and medical settings; (iii) the investigation of industrial and societal issues such as antibiotic resistance development. This review article summarizes the state-of-the-art functional metagenomic methods available and discusses the potential of functional metagenomic approaches to mine as yet unexplored environments to discover novel genes with biotechnological application in the food and pharmaceutical industries.
    • Cholestasis induced by bile duct ligation promotes changes in the intestinal microbiome in mice.

      Cabrera-Rubio, Raul; Patterson, Angela M; Cotter, Paul D.; Beraza, Naiara; Biotechnology and Biological Sciences Research Council; BB/J004529/1; BBS/E/F/00044509; BB/R012490/1; BBS/E/F/000PR10355; BB/CCG1860/1 (Nature, 2019-08-23)
      Increasing evidence point to the relevance of intestinal disfunction and changes in the microbiome composition during chronic liver disease. More specifically, recent studies have highlighted that cholestatic diseases associate with a reduction in the microbiome diversity in patients. Still, the dynamics of the changes in the microbiome composition observed, as well as their implication in contributing to the pathogenesis of this disease remain largely undefined. Hence, experimental mouse models resembling the human pathogenesis are crucial to move forward our understanding on the mechanisms underpinning cholestatic disease and to enable the development of effective therapeutics. Our results show that the bile duct ligation (BDL) experimental model of cholestasis leads to rapid and significant changes in the microbiome diversity, with more than 100 OTUs being significantly different in faecal samples obtained from WT mice at 3 days and 7 days after BDL when compared to control animals. Changes in the microbial composition in mice after BDL included the enrichment of Akkermansia, Prevotella, Bacteroides and unclassified Ruminococcaceae in parallel with a drastic reduction of the presence of Faecalibacterium prausnitzii. In conclusion, our results support that bile duct ligation induces changes in the microbiome that partly resemble the gut microbial changes observed during human cholestatic disease.
    • Comparative Genomic Analysis Reveals a Diverse Repertoire of Genes Involved in Prokaryote-Eukaryote Interactions within the Pseudovibrio Genus

      Romano, Stefano; Fernandez-Guerra, Antonio; Reen, F. Jerry; Glockner, Frank O.; Crowley, Susan P.; O'Sullivan, Orla; Cotter, Paul D.; Adams, Claire; Dobson, Alan D. W.; O'Gara, Fergal; et al. (Frontiers Media S. A., 30/03/2016)
      Strains of the Pseudovibrio genus have been detected worldwide, mainly as part of bacterial communities associated with marine invertebrates, particularly sponges. This recurrent association has been considered as an indication of a symbiotic relationship between these microbes and their host. Until recently, the availability of only two genomes, belonging to closely related strains, has limited the knowledge on the genomic and physiological features of the genus to a single phylogenetic lineage. Here we present 10 newly sequenced genomes of Pseudovibrio strains isolated from marine sponges from the west coast of Ireland, and including the other two publicly available genomes we performed an extensive comparative genomic analysis. Homogeneity was apparent in terms of both the orthologous genes and the metabolic features shared amongst the 12 strains. At the genomic level, a key physiological difference observed amongst the isolates was the presence only in strain P. axinellae AD2 of genes encoding proteins involved in assimilatory nitrate reduction, which was then proved experimentally. We then focused on studying those systems known to be involved in the interactions with eukaryotic and prokaryotic cells. This analysis revealed that the genus harbors a large diversity of toxin-like proteins, secretion systems and their potential effectors. Their distribution in the genus was not always consistent with the phylogenetic relationship of the strains. Finally, our analyses identified new genomic islands encoding potential toxin-immunity systems, previously unknown in the genus. Our analyses shed new light on the Pseudovibrio genus, indicating a large diversity of both metabolic features and systems for interacting with the host. The diversity in both distribution and abundance of these systems amongst the strains underlines how metabolically and phylogenetically similar bacteria may use different strategies to interact with the host and find a niche within its microbiota. Our data suggest the presence of a sponge-specific lineage of Pseudovibrio. The reduction in genome size and the loss of some systems potentially used to successfully enter the host, leads to the hypothesis that P. axinellae strain AD2 may be a lineage that presents an ancient association with the host and that may be vertically transmitted to the progeny.
    • Compared to casein, bovine lactoferrin reduces plasma leptin and corticosterone and affects hypothalamic gene expression without altering weight gain or fat mass in high fat diet fed C57/BL6J mice

      McManus, Bettina; Korpela, Riitta; O'Connor, Paula M.; Schellekens, Harriet; Cryan, John F.; Cotter, Paul D.; Nilaweera, Kanishka (Biomed Central, 08/12/2015)
      Background Several studies in both humans and rodents have examined the use of lactoferrin as a dietary solution to weight gain and visceral fat accretion and have shown promising results in the short term (up to 7 weeks). This study examined the effects of giving lactoferrin over a longer period of time. Methods For 13 weeks, male C57/BL6J mice were given a diet containing 10 % kJ fat and 20 % kJ casein (LFD) or a diet with 45 % kJ fat and either 20 % kJ casein (HFD) or 20 % kJ lactoferrin (HFD + Lac). Physiological, metabolic, and biochemical parameters were investigated. Gene expression was investigated by Real-Time PCR and microarray. All data was assessed using t-test, ANOVA or ANCOVA. Gene Set Enrichment Analysis was used to interpret microarray data and assess the impact on gene sets with common biological roles. Results By the end of the trial, HFD + Lac fed mice did not alter energy balance, body composition, bodyweight, or weight gain when compared to the HFD group. Notably, there were no changes in subcutaneous or epididymal adipose leptin mRNA levels between high fat diet groups, however plasma leptin was significantly reduced in the HFD + Lac compared to HFD group (P < 0.05) suggesting reduced leptin secretion. Global microarray analysis of the hypothalamus indicate an overall reduction in gene sets associated with feeding behaviour (P < 0.01) and an up-regulation of gene sets associated with retinol metabolism in the HFD + Lac group compared to the HFD group (P < 0.01). Genes in the latter catergory have been shown to impact on the hypothalamic-pituitary-adrenal axis. Notably, plasma corticosterone levels in the HFD + Lac group were reduced compared to the HFD fed mice (P < 0.05). Conclusions The data suggests that prolonged feeding of full-length dietary lactoferrin, as part of a high fat diet, does not have a beneficial impact on weight gain when compared to casein. However, its impact on leptin secretion and accompanying changes in hypothalamic gene expression may underlie how this dietary protein alters plasma corticosterone. The lactoferrin fed mouse model could be used to identify leptin and corticosterone regulated genes in the hypothalamus without the confounding effects of body weight change.
    • Comparing Apples and Oranges?: Next Generation Sequencing and Its Impact on Microbiome Analysis

      Clooney, Adam G; Fouhy, Fiona; Sleator, Roy D.; O'Driscoll, Aisling; STANTON, CATHERINE; Cotter, Paul D.; Claesson, Marcus J.; Science Foundation Ireland; European Union; SFI/12/RC/2273; et al. (PLOS, 05/02/2016)
      Rapid advancements in sequencing technologies along with falling costs present widespread opportunities for microbiome studies across a vast and diverse array of environments. These impressive technological developments have been accompanied by a considerable growth in the number ofmethodological variables, including sampling, storage, DNA extraction, primer pairs, sequencing technology, chemistry version, read length, insert size, and analysis pipelines, amongst others. This increase in variability threatens to compromise both the reproducibility and the comparability of studies conducted. Here we perform the first reported study comparing both amplicon and shotgun sequencing for the three leading next-generation sequencing technologies. These were applied to six human stool samples using Illumina HiSeq, MiSeq and Ion PGM shotgun sequencing, as well as amplicon sequencing across two variable 16S rRNA gene regions. Notably, we found that the factor responsible for the greatest variance inmicrobiota composition was the chosen methodology rather than the natural inter-individual variance, which is commonly one of the most significant drivers in microbiome studies. Amplicon sequencing suffered from this to a large extent, and this issue was particularly apparent when the 16S rRNA V1-V2 region amplicons were sequenced withMiSeq. Somewhat surprisingly, the choice of taxonomic binning software for shotgun sequences proved to be of crucial importance with even greater discriminatory power than sequencing technology and choice of amplicon. Optimal N50 assembly values for the HiSeq was obtained for 10million reads per sample, whereas the applied MiSeq and PGM sequencing depths proved less sufficient for shotgun sequencing of stool samples. The latter technologies, on the other hand, provide a better basis for functional gene categorisation, possibly due to their longer read lengths. Hence, in addition to highlighting methodological biases, this study demonstrates the risks associated with comparing data generated using different strategies. We also recommend that laboratories with particular interests in certain microbes should optimise their protocols to accurately detect these taxa using different techniques.
    • Composition of the early intestinal microbiota: Knowledge, knowledge gaps and the use of high-throughput sequencing to address these gaps

      Fouhy, Fiona; Ross, R Paul; Fitzgerald, Gerald F; STANTON, CATHERINE; Cotter, Paul D.; Irish Research Council for Science, Engineering and Technology; Teagasc Walsh Fellowship Programme; Science Foundation Ireland; 11/PI/1137 (Landes Bioscience, 01/05/2012)
      The colonization, development and maturation of the newborn gastrointestinal tract that begins immediately at birth and continues for two years, is modulated by numerous factors including mode of delivery, feeding regime, maternal diet/weight, probiotic and prebiotic use and antibiotic exposure pre-, peri- and post-natally. While in the past, culture-based approaches were used to assess the impact of these factors on the gut microbiota, these have now largely been replaced by culture-independent DNA-based approaches and most recently, high-throughput sequencing-based forms thereof. The aim of this review is to summarize recent research into the modulatory factors that impact on the acquisition and development of the infant gut microbiota, to outline the knowledge recently gained through the use of culture-independent techniques and, in particular, highlight advances in high-throughput sequencing and how these technologies have, and will continue to, fill gaps in our knowledge with respect to the human intestinal microbiota.
    • Controlled functional expression of the bacteriocins pediocin PA-1 and bactofencin A in Escherichia coli

      Mesa-Pereira, Beatriz; O’Connor, Paula M.; Rea, Mary; Cotter, Paul D.; Hill, Colin; Ross, R Paul; Science Foundation Ireland; SFI/12/RC/2273 (Nature Publishing Group, 2017-06-08)
      The bacteriocins bactofencin A (class IId) and pediocin PA-1 (class IIa) are encoded by operons with a similarly clustered gene organization including a structural peptide, an immunity protein, an ABC transporter and accessory bacteriocin transporter protein. Cloning of these operons in E. coli TunerTM (DE3) on a pETcoco-2 derived vector resulted in successful secretion of both bacteriocins. A corresponding approach, involving the construction of vectors containing different combinations of these genes, revealed that the structural and the transporter genes alone are sufficient to permit heterologous production and secretion in this host. Even though the accessory protein, usually associated with optimal disulfide bond formation, was not required for bacteriocin synthesis, its presence did result in greater pediocin PA-1 production. The simplicity of the system and the fact that the associated bacteriocins could be recovered from the extracellular medium provides an opportunity to facilitate protein engineering and the overproduction of biologically-active bacteriocins at industrial scale. Additionally, this system could enable the characterization of new bacteriocin operons where genetic tools are not available for the native producers.
    • Crop Establishment Practices Are a Driver of the Plant Microbiota in Winter Oilseed Rape (Brassica napus)

      Rathore, Ridhdhi; Dowling, David N.; Forristal, P.D.; Spink, John; Cotter, Paul D.; Bulgarelli, Davide; Germaine, Kieran J.; Teagasc Walsh Fellowship Programme; Royal Society of Edinburgh/Scottish Government Personal Research Fellowship (Frontiers, 2017-08-09)
      Gaining a greater understanding of the plant microbiota and its interactions with its host plant heralds a new era of scientific discovery in agriculture. Different agricultural management practices influence soil microbial populations by changing a soil’s physical, chemical and biological properties. However, the impact of these practices on the microbiota associated with economically important crops such as oilseed rape, are still understudied. In this work we investigated the impact of two contrasting crop establishment practices, conventional (plow based) and conservation (strip–tillage) systems, on the microbiota inhabiting different plant microhabitats, namely rhizosphere, root and shoot, of winter oilseed rape under Irish agronomic conditions. Illumina 16S rRNA gene sequence profiling showed that the plant associated microhabitats (root and shoot), are dominated by members of the bacterial phyla Proteobacteria, Actinobacteria and Bacteroidetes. The root and shoot associated bacterial communities displayed markedly distinct profiles as a result of tillage practices. We observed a very limited ‘rhizosphere effect’ in the root zone of WOSR, i.e., there was little or no increase in bacterial community richness and abundance in the WOSR rhizosphere compared to the bulk soil. The two tillage systems investigated did not appear to lead to any major long term differences on the bulk soil or rhizosphere bacterial communities. Our data suggests that the WOSR root and shoot microbiota can be impacted by management practices and is an important mechanism that could allow us to understand how plants respond to different management practices and environments.
    • A degenerate PCR-based strategy as a means of identifying homologues of aminoglycoside and ß-lactam resistance genes in the gut microbiota

      Fouhy, Fiona; Ross, R Paul; Fitzgerald, Gerald F; STANTON, CATHERINE; Cotter, Paul D.; Irish Research Council; Teagasc Walsh Fellowship Programme; Science Foundation Ireland; 11/PI/1137 (Biomed Central, 05/02/2014)
      Background: The potential for the human gut microbiota to serve as a reservoir for antibiotic resistance genes has been the subject of recent discussion. However, this has yet to be investigated using a rapid PCR-based approach. In light of this, here we aim to determine if degenerate PCR primers can detect aminoglycoside and β-lactam resistance genes in the gut microbiota of healthy adults, without the need for an initial culture-based screen for resistant isolates. In doing so, we would determine if the gut microbiota of healthy adults, lacking recent antibiotic exposure, is a reservoir for resistance genes. Results: The strategy employed resulted in the identification of numerous aminoglycoside (acetylation, adenylation and phosphorylation) and β-lactam (including bla OXA, bla TEM, bla SHV and bla CTX-M) resistance gene homologues. On the basis of homology, it would appear that these genes originated from different bacterial taxa, with members of the Enterobacteriaceae being a particularly rich source. The results demonstrate that, even in the absence of recent antibiotic exposure, the human gut microbiota is a considerable reservoir for antibiotic resistance genes. Conclusions: This study has demonstrated that the gut can be a significant source of aminoglycoside and β-lactam resistance genes, even in the absence of recent antibiotic exposure. The results also demonstrate that PCR-based approaches can be successfully applied to detect antibiotic resistance genes in the human gut microbiota, without the need to isolate resistant strains. This approach could also be used to rapidly screen other complex environments for target genes.
    • Detection and Enumeration of Spore-Forming Bacteria in Powdered Dairy Products

      McHugh, Aoife; Feehily, Conor; Hill, Colin; Cotter, Paul D.; Department of Agriculture, Food and the Marine (Frontiers, 2017-01-31)
      With the abolition of milk quotas in the European Union in 2015, several member states including Ireland, Luxembourg, and Belgium have seen year on year bi-monthly milk deliveries to dairies increase by up to 35%. Milk production has also increased outside of Europe in the past number of years. Unsurprisingly, there has been a corresponding increased focus on the production of dried milk products for improved shelf life. These powders are used in a wide variety of products, including confectionery, infant formula, sports dietary supplements and supplements for health recovery. To ensure quality and safety standards in the dairy sector, strict controls are in place with respect to the acceptable quantity and species of microorganisms present in these products. A particular emphasis on spore-forming bacteria is necessary due to their inherent ability to survive extreme processing conditions. Traditional microbiological detection methods used in industry have limitations in terms of time, efficiency, accuracy, and sensitivity. The following review will explore the common spore-forming bacterial contaminants of milk powders, will review the guidelines with respect to the acceptable limits of these microorganisms and will provide an insight into recent advances in methods for detecting these microbes. The various advantages and limitations with respect to the application of these diagnostics approaches for dairy food will be provided. It is anticipated that the optimization and application of these methods in appropriate ways can ensure that the enhanced pressures associated with increased production will not result in any lessening of safety and quality standards.
    • Detection and Enumeration of Spore-Forming Bacteria in Powdered Dairy Products

      McHugh, Aoife; Feehily, Conor; Hill, Colin; Cotter, Paul D.; Department of Agriculture, Food and the Marine, Ireland (Frontiers, 31/01/2017)
      With the abolition of milk quotas in the European Union in 2015, several member states including Ireland, Luxembourg, and Belgium have seen year on year bi-monthly milk deliveries to dairies increase by up to 35%. Milk production has also increased outside of Europe in the past number of years. Unsurprisingly, there has been a corresponding increased focus on the production of dried milk products for improved shelf life. These powders are used in a wide variety of products, including confectionery, infant formula, sports dietary supplements and supplements for health recovery. To ensure quality and safety standards in the dairy sector, strict controls are in place with respect to the acceptable quantity and species of microorganisms present in these products. A particular emphasis on spore-forming bacteria is necessary due to their inherent ability to survive extreme processing conditions. Traditional microbiological detection methods used in industry have limitations in terms of time, efficiency, accuracy, and sensitivity. The following review will explore the common spore-forming bacterial contaminants of milk powders, will review the guidelines with respect to the acceptable limits of these microorganisms and will provide an insight into recent advances in methods for detecting these microbes. The various advantages and limitations with respect to the application of these diagnostics approaches for dairy food will be provided. It is anticipated that the optimization and application of these methods in appropriate ways can ensure that the enhanced pressures associated with increased production will not result in any lessening of safety and quality standards.
    • Detection of presumptive Bacillus cereus in the Irish dairy farm environment

      O'Connell, Aine; Lawton, Elaine M.; Leong, Dara; Cotter, Paul D.; Gleeson, David E; Guinane, Caitriona M.; Teagasc Walsh Fellowship Programme (Teagasc (Agriculture and Food Development Authority), Ireland, 30/01/2016)
      The objective of the study was to isolate potential Bacillus cereus sensu lato (B. cereus s.l.) from a range of farm environments. Samples of tap water, milking equipment rinse water, milk sediment filter, grass, soil and bulk tank milk were collected from 63 farms. In addition, milk liners were swabbed at the start and the end of milking, and swabs were taken from cows’ teats prior to milking. The samples were plated on mannitol egg yolk polymyxin agar (MYP) and presumptive B. cereus s.l. colonies were isolated and stored in nutrient broth with 20% glycerol and frozen at -80 °C. These isolates were then plated on chromogenic medium (BACARA) and colonies identified as presumptive B. cereus s.l. on this medium were subjected to 16S ribosomal RNA (rRNA) sequencing. Of the 507 isolates presumed to be B. cereus s.l. on the basis of growth on MYP, only 177 showed growth typical of B. cereus s.l. on BACARA agar. The use of 16S rRNA sequencing to identify isolates that grew on BACARA confirmed that the majority of isolates belonged to B. cereus s.l. A total of 81 of the 98 isolates sequenced were tentatively identified as presumptive B. cereus s.l. Pulsed-field gel electrophoresis was carried out on milk and soil isolates from seven farms that were identified as having presumptive B. cereus s.l. No pulsotype was shared by isolates from soil and milk on the same farm. Presumptive B. cereus s.l. was widely distributed within the dairy farm environment.
    • Dietary alpha-lactalbumin alters energy balance, gut microbiota composition and intestinal nutrient transporter expression in high-fat diet fed mice

      Boscaini, Serena; Cabrera-Rubio, Raul; Speakman, John R.; Cotter, Paul D.; Cryan, John F.; Nilaweera, Kanishka; Teagasc Walsh Fellowship Programme; Science Foundation Ireland; BBSRC; Teagasc; et al. (Cambridge University Press, 2019-03-05)
      Recently there has been a considerable rise in the frequency of metabolic diseases, such as obesity, due to changes in lifestyle and resultant imbalances between energy intake and expenditure. Whey proteins are considered as potentially important components of a dietary solution to the obesity problem. However, the roles of individual whey proteins in energy balance remain poorly understood. This study investigated the effects of a high fat diet (HFD) containing alphalactalbumin (LAB), a specific whey protein, or the non-whey protein casein (CAS), on energy balance, nutrient transporters expression, and enteric microbial populations. C57BL/6J mice (n = 8) were given a HFD containing either 20% CAS or LAB as protein sources or a low-fat diet (LFD) containing CAS for 10 weeks. HFD-LAB fed mice showed a significant increase in cumulative energy intake (P=0.043), without differences in body weight, energy expenditure, locomotor activity, respiratory exchange ratio or subcutaneous and epididymal adipose tissue weight. HFD-LAB intake led to a decrease in the expression of glucose transporter glut2 in the ileum (P=0.05)and in the fatty acid transporter cd36 (P<0.001) in both ileum and jejunum. This suggests a reduction of absorption efficiency within the small intestine in the HFD-LAB group. DNA from faecal samples was used for 16S rRNA-based assessment of intestinal microbiota populations; the genera Lactobacillus, Parabacteroides and Bifidobacterium were present in significantly higher proportions in the HFD-LAB group. These data indicate a possible functional relationship between gut microbiota, intestinal nutrient transporters and energy balance, with no impact on weight gain.
    • Distinct microbiome composition and metabolome exists across subgroups of elite Irish athletes

      O'Donovan, Ciara M.; Madigan, Sharon M.; Garcia-Perez, Isabel; Rankin, Alan; O'Sullivan, Orla; Cotter, Paul D.; Science Foundation Ireland; National Institute for Health Research; SFI/12/RC/2273; 13/SIRG/2160; et al. (2019-09-18)
      Objectives: The gut microbiome has begun to be characterised in athlete groups, albeit, to date, only across a subset of sports. This study aimed to determine if the gut microbiome and metabolome differed across sports classification groups (SCGs) among elite Irish athletes, many of whom were participating in the 2016 Summer Olympics. Methods: Faecal and urine samples were collected from 37 international level athletes. Faecal samples were prepared for shotgun metagenomic sequencing and faecal and urine samples underwent metabolomic profiling. Results: Differences were observed in the composition and functional capacity of the gut microbiome of athletes across SCGs. The microbiomes of athletes participating in sports with a high dynamic component were the most distinct compositionally (greater differences in proportions of species), while those of athletes participating in sports with high dynamic and static components were the most functionally distinct (greater differences in functional potential). Additionally, both microbial (faecal) and human (urine) derived metabolites were found to vary between SCGs. In particular cis-aconitate, succinic acid and lactate, in urine samples, and creatinine, in faeces, were found to be significantly different between groups. These differences were evident despite the absence of significant differences in diet, as determined using food frequency questionnaires, which were translated into nutrient intake values using FETA. Conclusions: Differences in the gut microbiome and metabolome between groups, in the absence of dietary changes, indicate a role for training load or type as a contributory factor. Further exploration of this hypothesis has the potential to benefit athletes, aspiring athletes and the general public.
    • Distinct microbiome composition and metabolome exists across subgroups of elite Irish athletes

      O’Donovan, Ciara M.; Madigan, Sharon M.; Garcia-Perez, Isabel; Rankin, Alan; O’ Sullivan, Orla; Cotter, Paul D.; Science Foundation Ireland; National Institute for Health Research; SFI/12/RC/2273; 13/SIRG/2160; et al. (Elsevier BV, 2019-09-18)
      Objectives: The gut microbiome has begun to be characterised in athlete groups, albeit, to date, only across a subset of sports. This study aimed to determine if the gut microbiome and metabolome differed across sports classification groups (SCGs) among elite Irish athletes, many of whom were participating in the 2016 Summer Olympics. Methods: Faecal and urine samples were collected from 37 international level athletes. Faecal samples were prepared for shotgun metagenomic sequencing and faecal and urine samples underwent metabolomic profiling. Results: Differences were observed in the composition and functional capacity of the gut microbiome of athletes across SCGs. The microbiomes of athletes participating in sports with a high dynamic component were the most distinct compositionally (greater differences in proportions of species), while those of athletes participating in sports with high dynamic and static components were the most functionally distinct (greater differences in functional potential). Additionally, both microbial (faecal) and human (urine) derived metabolites were found to vary between SCGs. In particular cis-aconitate, succinic acid and lactate, in urine samples, and creatinine, in faeces, were found to be significantly different between groups. These differences were evident despite the absence of significant differences in diet, as determined using food frequency questionnaires, which were translated into nutrient intake values using FETA. Conclusions: Differences in the gut microbiome and metabolome between groups, in the absence of dietary changes, indicates a role for training load or type as a contributory factor. Further exploration of this hypothesis has the potential to benefit athletes, aspiring athletes and the general public.
    • Early Salmonella Typhimurium infection in pigs disrupts Microbiome composition and functionality principally at the ileum mucosa

      Argüello, Héctor; Estellé, Jordi; Zaldívar-López, Sara; Jiménez-Marín, Ángeles; Carvajal, Ana; López-Bascón, Mª Asunción; Crispie, Fiona; O’Sullivan, Orla; Cotter, Paul D.; Priego-Capote, Feliciano; et al. (Springer Nature, 2018-05-17)
      Salmonella is a major foodborne pathogen which successfully infects animal species for human consumption such as swine. The pathogen has a battery of virulence factors which it uses to colonise and persist within the host. The host microbiota may play a role in resistance to, and may also be indirectly responsible from some of the consequences of, Salmonella infection. To investigate this, we used 16S rRNA metagenomic sequencing to determine the changes in the gut microbiota of pigs in response to infection by Salmonella Typhimurium at three locations: ileum mucosa, ileum content and faeces. Early infection (2 days post-infection) impacted on the microbiome diversity at the mucosa, reflected in a decrease in representatives of the generally regarded as desirable genera (i.e., Bifidobacterium and Lactobacillus). Severe damage in the epithelium of the ileum mucosa correlated with an increase in synergistic (with respect to Salmonella infection; Akkermansia) or opportunistically pathogenic bacteria (Citrobacter) and a depletion in anaerobic bacteria (Clostridium spp., Ruminococcus, or Dialliser). Predictive functional analysis, together with metabolomic analysis revealed changes in glucose and lipid metabolism in infected pigs. The observed changes in commensal healthy microbiota, including the growth of synergistic or potentially pathogenic bacteria and depletion of beneficial or competing bacteria, could contribute to the pathogen’s ability to colonize the gut successfully. The findings from this study could be used to form the basis for further research aimed at creating intervention strategies to mitigate the effects of Salmonella infection.
    • Effect of Bioengineering Lacticin 3147 Lanthionine Bridges on Specific Activity and Resistance to Heat and Proteases

      Suda, Srinivas; Westerbeek, Alja; O'Connor, Paula M.; Hill, Colin; Cotter, Paul D.; Ross, R Paul; Science Foundation Ireland; 06/IN.1/B98 (Elsevier BV, 2010-10-28)
      Lacticin 3147 is a lantibiotic with seven lanthionine bridges across its two component peptides, Ltnα and Ltnβ. Although it has been proposed that the eponymous lanthionine and (β-methyl)lanthionine (Lan and meLan) bridges present in lantibiotics make an important contribution to protecting the peptides from thermal or proteolytic degradation, few studies have investigated this link. We have generated a bank of bioengineered derivatives of lacticin 3147, in which selected bridges were removed or converted between Lan and meLan, which were exposed to high temperature or proteolytic enzymes. Although switching Lan and meLan bridges has variable consequences, it was consistently observed that an intact N-terminal lanthionine bridge (Ring A) confers Ltnα with enhanced resistance to thermal and proteolytic degradation.
    • The Effect of Feeding Bt MON810 Maize to Pigs for 110 Days on Intestinal Microbiota

      Buzoianu, Stefan G.; Walsh, Maria C.; Rea, Mary; O'Sullivan, Orla; Crispie, Fiona; Cotter, Paul D.; Ross, R Paul; Gardiner, Gillian E.; Lawlor, Peadar G; European Union; et al. (PLOS, 04/05/2012)
      Objective To assess the effects of feeding Bt MON810 maize to pigs for 110 days on the intestinal microbiota. Methodology/Principal Findings Forty male pigs (~40 days old) were blocked by weight and litter ancestry and assigned to one of four treatments; 1) Isogenic maize-based diet for 110 days (Isogenic); 2) Bt maize-based diet (MON810) for 110 days (Bt); 3) Isogenic maize-based diet for 30 days followed by a Bt maize-based diet for 80 days (Isogenic/Bt); 4) Bt maize-based diet for 30 days followed by an isogenic maize-based diet for 80 days (Bt/Isogenic). Enterobacteriaceae, Lactobacillus and total anaerobes were enumerated in the feces using culture-based methods on days 0, 30, 60 and 100 of the study and in ileal and cecal digesta on day 110. No differences were found between treatments for any of these counts at any time point. The relative abundance of cecal bacteria was also determined using high-throughput 16 S rRNA gene sequencing. No differences were observed in any bacterial taxa between treatments, with the exception of the genus Holdemania which was more abundant in the cecum of pigs fed the isogenic/Bt treatment compared to pigs fed the Bt treatment (0.012 vs 0.003%; P≤0.05). Conclusions/Significance Feeding pigs a Bt maize-based diet for 110 days did not affect counts of any of the culturable bacteria enumerated in the feces, ileum or cecum. Neither did it influence the composition of the cecal microbiota, with the exception of a minor increase in the genus Holdemania. As the role of Holdemania in the intestine is still under investigation and no health abnormalities were observed, this change is not likely to be of clinical significance. These results indicate that feeding Bt maize to pigs in the context of its influence on the porcine intestinal microbiota is safe.
    • Effect of milk centrifugation and incorporation of high heat-treated centrifugate on the microbial composition and levels of volatile organic compounds of Maasdam cheese

      Lamichhane, Prabin; Pietrzyk, Anna; Feehily, Conor; Cotter, Paul D.; Mannion, David T.; Kilcawley, Kieran; Kelly, Alan L.; Sheehan, Diarmuid (JJ); Dairy Levy Trust; Teagasc Walsh Fellowship Programme; et al. (Elsevier, 2018-03-15)
      Centrifugation is a common milk pretreatment method for removal of Clostridium spores which, on germination, can produce high levels of butyric acid and gas, resulting in rancid, gassy cheese. The aim of this study was to determine the effect of centrifugation of milk, as well as incorporation of high heat-treated centrifugate into cheese milk, on the microbial and volatile profile of Maasdam cheese. To facilitate this, 16S rRNA amplicon sequencing in combination with a selective media-based approach were used to study the microbial composition of cheese during maturation, and volatile organic compounds within the cheese matrix were analyzed by HPLC and solid-phase microextraction coupled with gas chromatography–mass spectrometry. Both culture-based and molecular approaches revealed major differences in microbial populations within the cheese matrix before and after warm room ripening. During warm room ripening, an increase in counts of propionic acid bacteria (by ∼101.5 cfu) and nonstarter lactic acid bacteria (by ∼108 cfu) and a decrease in the counts of Lactobacillus helveticus (by ∼102.5 cfu) were observed. Lactococcus species dominated the curd population throughout ripening, followed by Lactobacillus, Propionibacterium, and Leuconostoc, and the relative abundance of these accounted for more than 99% of the total genera, as revealed by high-throughput sequencing. Among subdominant microflora, the overall relative abundance of Clostridium sensu stricto was lower in cheeses made from centrifuged milk than control cheeses, which coincided with lower levels of butyric acid. Centrifugation as well as incorporation of high heat-treated centrifugate into cheese milk seemed to have little effect on the volatile profile of Maasdam cheese, except for butyric acid levels. Overall, this study suggests that centrifugation of milk before cheesemaking is a suitable method for controlling undesirable butyric acid fermentation without significantly altering the levels of other volatile organic compounds of Maasdam cheese.