• Covalent labelling of β-casein and its effect on the microstructure and physico-chemical properties of emulsions stabilized by β-casein and whey protein isolate

      Li, Meng; Auty, Mark; O'Mahony, James A.; Kelly, Alan L.; Brodkorb, Andre; Irish Dairy Levy Research Trust; Teagasc Walsh Fellowship Programme (Elsevier, 2016-12)
      The objective of this work was to investigate the effect of covalent labelling on the physico-chemical properties of β-casein (β-CN) in solution and in emulsions stabilized by β-CN and whey protein isolate (WPI). β-CN was covalently labelled by 5-(and 6)-carboxytetramethylrhodamine, succinimidyl ester (NHS-Rhodamine). The effect of conjugating β-CN with NHS-Rhodamine on the spectroscopic properties of labelled β-CN (β-CNlabelled) was examined. No significant difference in interfacial tension (p > 0.05) was found between mixture of WPI and β-CNlabelled (0.5% w/w WPI/β-CNlabelled) and of WPI and β-CN (0.5% w/w WPI/β-CN) in 10 mM phosphate buffer (pH 7.0) at 20 °C. Oil-in-water emulsions stabilized with either WPI/β-CN or WPI/β-CNlabelled (0.5% w/w) were also investigated using laser-light scattering, analytical centrifugation, rheometry and CLSM. It was shown that labelling had no significant effect on the physico-chemical properties of emulsions (p > 0.05) in terms of droplet size, creaming stability, viscosity or zeta-potential. Confocal micrographs of emulsions made with WPI/β-CNlabelled showed that both β-CN and whey proteins could be observed simultaneously, and were co-localized at the surface of fat globules. Furthermore, it was found through image analysis that β-CN produced a thicker interfacial layer than WPI.
    • Emulsifying properties of hemp proteins: Effect of isolation technique

      Dapčević-Hadnađev, Tamara; Dizdar, Manda; Pojić, Milica; Krstonošić, Veljko; Zychowski, Lisa M.; Hadnađev, Miroslav; Provincial Secretariat for Higher Education and Scientific Research, Republic of Serbia; European Union; 142-451-2458/2018-01/02; 692276 (Elsevier, 2018-12-03)
      Hemp protein was isolated from hemp seed meal using two different isolation procedures: alkali extraction/isoelectric precipitation (HPI) and micellization (HMI). The ability of these proteins to form and stabilize 10% (w/w) sunflower oil-in-water emulsions (at pH = 3.0) was studied at three different concentrations, 0.25, 0.75 and 1.5% (w/w), by monitoring emulsion droplet size distribution, microstructural and morphological properties, rheological behaviour and stability against flocculation, coalescence and creaming. In addition, hemp proteins were analysed for water solubility, denaturation degree and surface/interfacial activity. HMI protein, which was found to be less denatured after isolation, exhibited higher solubility and slightly higher surface/interfacial activity than HPI protein. HMI emulsions possessed a smaller volume mean droplet diameter (d4,3 = 1.92–3.42 μm in 2% SDS) than HPI emulsions (d4,3 = 2.25–15.77 μm in 2% SDS). While HMI stabilized emulsions were characterized with individual droplets covered by protein film, both confocal laser scanning microscopy and flocculation indices indicated occurrence of bridging flocculation in HPI stabilized emulsions. Protein aggregation, which induced flocculation of the droplets, contributed to higher apparent viscosity of HPI stabilized emulsions compared to HMI stabilized emulsions. Interestingly, emulsions stabilized with 1.5% (w/w) HPI exhibited much better creaming and coalescence stability than other emulsions due to the formation of a weak transient network of floccules and higher continuous phase viscosity which both suppressed the movement of the droplets.
    • Stabilising effect of α-lactalbumin on concentrated infant milk formula emulsions heat treated pre- or post-homogenisation

      Buggy, Aoife K.; McManus, Jennifer J.; Brodkorb, Andre; McCarthy, Noel; Fenelon, Mark A.; Department of Agriculture, Food and the Marine; Teagasc Walsh Fellowship Programme; 11/F/037 (Springer, 22/11/2016)
      Protein type and/or heat treatment pre- or post-homogenisation can affect the physical stability of infant formulations during manufacture. Previous research has described the use of α-lactalbumin addition in infant formulae, but has not demonstrated the effect of heating pre- or post-emulsion formulation during processing. The objective of this study was to evaluate the effect of both of these parameters. Three batches of model 1st-stage infant formula containing differing whey protein ratios (60:40 whey: casein with α-lactalbumin content 12, 30 or 48% of total protein) were prepared. Each batch was split; one half receiving heat treatment pre-homogenisation and the second half homogenised and then heat treated. Emulsion stability was determined by size exclusion chromatography, SDS-PAGE, particle size and viscosity measurements. There was a significant (P < 0.05) reduction in the formation of large soluble aggregates upon increasing α-lac concentration in emulsions heat treated either before or after homogenisation. Heat treatment of formulations post-homogenisation resulted in a higher (P < 0.05) D.v09 within the particle size distribution; increasing α-lactalbumin concentration to 30 or 48% significantly (P < 0.05) reduced the D.v09 within the particle size distribution in these emulsions. The viscosity of concentrates (55 % total solids) containing the 12% α-lactalbumin, heat treated post-homogenisation, was significantly greater (P < 0.05) than the equivalent emulsion heat treated pre-homogenisation; increasing the α-lactalbumin concentration to 30 or 48% significantly (P < 0.05) reduced viscosity. When the α-lactalbumin content was increased to 48% as a percentage of the total protein, heating before or after emulsion formation had no effect on concentrate viscosity. The findings demonstrate the importance of thermal denaturation/aggregation of whey proteins (and in particular, the ratio of α-lactalbumin to β-lactoglobulin) prior to homogenisation of infant formula emulsions.