• In vitro digestion of protein-enriched restructured beef steaks with pea protein isolate, rice protein and lentil flour following sous vide processing

      Baugreet, Sephora; Gomez, Carolina; Auty, Mark; Kerry, Joseph P.; Hamill, Ruth M; Brodkorb, Andre; Teagasc Walsh Fellowship Programme; Department of Agriculture, Food and the Marine; 11/F/045 (Elsevier, 2019-04-12)
      The effect of plant protein inclusion in cooked meat upon in vitro gastro-intestinal (GI) digestion was investigated. Pea protein isolate, rice protein and lentil flour were used to increase the protein content in a meat model system restructured using two transglutaminase enzymes [Activa®EB (TG) and Transgluseen™-M (TS)]. Restructured beef steaks were subjected to simulated GI digestion using the static INFOGEST method. Samples taken at different digestion times were analysed using SDS-PAGE, size exclusion-HPLC, free amino acid analysis and microscopy. SDS-PAGE analysis revealed significant protein hydrolysis during GI digestion. Most soluble peptides had a molecular weight smaller than 500 Da, corresponding to peptides of <5 amino acids, regardless of food treatment. The amounts of released, free amino acids isoleucine, lysine, phenylalanine and valine were higher (P < 0.05) in lentil-enriched restructured beef steaks following GI digestion. Confocal laser scanning microscopy (CSLM) revealed pronounced aggregation in digested samples. In vitro digestates of protein-enriched restructured beef steaks showed lower production of small molecular weight peptides. This study demonstrated how the bioaccessibility of protein-enriched restructured beef steaks are influenced by formulation and processing.