Genome sequence of Ensifer adhaerens OV14 provides insights into its ability as a novel vector for the genetic transformation of plant genomes
dc.contributor.author | Rudder, Steven | * |
dc.contributor.author | Doohan, Fiona | * |
dc.contributor.author | Creevey, Christopher J. | * |
dc.contributor.author | Wendt, Toni | * |
dc.contributor.author | Mullins, Ewen | * |
dc.date.accessioned | 2014-10-10T16:05:52Z | |
dc.date.available | 2014-10-10T16:05:52Z | |
dc.date.issued | 2014-04-07 | |
dc.identifier.citation | Rudder et al. Genome sequence of Ensifer adhaerens OV14 provides insights into its ability as a novel vector for the genetic transformation of plant genomes. BMC Genomics 2014, 15:268. doi:10.1186/1471-2164-15-268 | en_GB |
dc.identifier.uri | http://hdl.handle.net/11019/730 | |
dc.identifier.uri | http://dx.doi.org/10.1186/1471-2164-15-268 | |
dc.description | peer-reviewed | en_GB |
dc.description | This publication has emanated from research conducted with the financial support of Science Foundation Ireland under grant number SFI 11/RFP.1/ GEN/3420. | |
dc.description.abstract | Abstract Background Recently it has been shown that Ensifer adhaerens can be used as a plant transformation technology, transferring genes into several plant genomes when equipped with a Ti plasmid. For this study, we have sequenced the genome of Ensifer adhaerens OV14 (OV14) and compared it with those of Agrobacterium tumefaciens C58 (C58) and Sinorhizobium meliloti 1021 (1021); the latter of which has also demonstrated a capacity to genetically transform crop genomes, albeit at significantly reduced frequencies. Results The 7.7 Mb OV14 genome comprises two chromosomes and two plasmids. All protein coding regions in the OV14 genome were functionally grouped based on an eggNOG database. No genes homologous to the A. tumefaciens Ti plasmid vir genes appeared to be present in the OV14 genome. Unexpectedly, OV14 and 1021 were found to possess homologs to chromosomal based genes cited as essential to A. tumefaciens T-DNA transfer. Of significance, genes that are non-essential but exert a positive influence on virulence and the ability to genetically transform host genomes were identified in OV14 but were absent from the 1021 genome. Conclusions This study reveals the presence of homologs to chromosomally based Agrobacterium genes that support T-DNA transfer within the genome of OV14 and other alphaproteobacteria. The sequencing and analysis of the OV14 genome increases our understanding of T-DNA transfer by non-Agrobacterium species and creates a platform for the continued improvement of Ensifer-mediated transformation (EMT). | en_GB |
dc.description.sponsorship | Science Foundation Ireland | en_GB |
dc.language.iso | en | en_GB |
dc.publisher | Biomed Central | en_GB |
dc.relation.ispartofseries | BMC Genomics;vol 15 | |
dc.subject | Ensifer adhaerens | en_GB |
dc.subject | Transformation | en_GB |
dc.subject | Agrobacterium tumefaciens | en_GB |
dc.subject | Genome sequencing | en_GB |
dc.title | Genome sequence of Ensifer adhaerens OV14 provides insights into its ability as a novel vector for the genetic transformation of plant genomes | en_GB |
dc.type | Article | en_GB |
dc.identifier.rmis | OPCH-0302-6188 | |
refterms.dateFOA | 2018-01-12T08:10:49Z |
Files in this item
This item appears in the following Collection(s)
-
Crop Science [124]
-
Teagasc publications in Biomed Central [260]
Teagasc publications in Biomed Central