• The effects of sequential heat treatment on microbial reduction and spore inactivation during milk processing

      Li, Fang; Hunt, Karen; Buggy, Aoife K.; Murphy, Kevin; Ho, Quang Tri; O'Callaghan, Tom; Butler, Francis; Jordan, Kieran; Tobin, John; Department of Agriculture, Food and the Marine; et al. (Elsevier BV, 2020-05)
      Sequential heating processes are commonly applied to milk by the dairy industry as part of their microbiological control strategy. Often pasteurisation at 72 °C is followed by a sequential high heat treatment step of up to 125 °C; however, such severe heat treatment can lead to reduced protein quality. Nine temperature combinations (80–90 °C) were evaluated to assess microbial reduction and whey protein nitrogen index values during pilot scale milk processing. A total of 110 bacterial isolates were identified to species level by 16S rDNA sequencing, with Bacillus licheniformis identified as the dominant species. While the experimental treatments did not achieve microbial reductions comparable with the control heating process, the results of this study provide a benchmark for milk processors relative to the effects of sequential heat treatments on milk and their impact on the survival of both thermally resistant microbial populations and thermally labile milk components during processing.