• Variation in the quality of meat from Irish steers at the time of slaughter.

      Moloney, Aidan P; Mullen, Anne Maria; Maher, S.C.; Buckley, D.J.; Kerry, Joseph P. (Teagasc, 01/01/2004)
      There is no information on the variation in quality, in particular tenderness, that exists in Irish Beef nor is there information on the variation that would remain if optimum practices were imposed at all stages of the beef production chain. Evaluation of the success of measures to improve beef consistency requires information on existing variation and the minimum variation achievable.The objectives of this project were (i) to establish the variation that exists in the quality of meat from Irish cattle, (ii) to quantify the minimum variation in meat quality that can be achieved in a practical beef production system, (iii) to determine the effects and mechanisms of additional sources of variation. The conclusions from this project are: • The M. longissimus dorsi (loin) was found to be more variable than the M. semimembranosus (topside) for most quality attributes examined (tenderness, sarcomere length and pH). The scale of variation within the loin was similar to that reported by the other research groups within the EU and US. Heifers were more variable than steers for most attributes, while there was no consistent classification effect on the variability of meat quality attributes. • Tenderness was equally variable in meat from genetically similar steers, managed similarly, compared to commercial steers randomly selected from a factory lairage but matched for weight and grade.This was likely a result of both groups being crossbred beef cattle of similar age, fat score, carcass weight and managed identically post-mortem. However, variation in tenderness of both groups was less than that observed in a survey of commercial throughput (experiment 1). This decrease is attributed to better pre-and-post-slaughter handling practices. • The data suggest that selection of sires (within a breed) with better than average conformation has no deleterious effect on the eating quality of beef of their progeny.A more comprehensive comparison of sires within a breed and between breeds is required to confirm the generality of this conclusion. • In a comparison of genotypes, gender and slaughter weights, there was no evidence that variation around the mean value for tenderness differed between breeds or liveweights after 14 days ageing. Bulls were more variable than steers for some quality traits but the variation in tenderness was similar for bulls and steers after 14 days ageing. • While optimising the management of animals during the pre and post-slaughter period reduced variation in tenderness, some residual variation remained. A large percentage of the residual variation in tenderness (Warner Bratzler shear force) after 2 and 7 days post-mortem was explained by proteolysis (breakdown of myofibrillar proteins).Variation in tenderness (Warner Bratzler shear force) after 2 days post-mortem was largely explained by phosphates (energy) and proteolysis, while sensory tenderness was largely explained by phosphates and glycolytic potential. • Further work is required to reduce residual variation in Irish beef and to determine the causes of this variation.
    • Very fast chilling in beef

      Troy, Declan J.; Joseph, Robin; European Union; AIR-CT94-1881 (Teagasc, 2001-07)
      Very fast chilling (VFC) of beef reduces the temperature to -1ºC after 5 hours post mortem throughout its mass. The process has many potential benefits (Joseph,1996) including the production of tender meat and greater process efficiency in the meat plant.
    • The virulence of E. coli 0157:H7 isolated from Irish sheep and pigs to humans

      Lenahan, Mary; Sheridan, James J.; O'Brien, Stephen (Teagasc, 2008-02)
      Investigations were carried out at five sheep and five pig export abattoirs situated in the Republic of Ireland to determine the prevalence of E. coli O157:H7 in these animals at slaughter. This is the first study for the presence of E. coli O157:H7 on sheep and pigs to be carried out in Ireland. Faeces and pre- and post-chill carcass swabs were collected from pigs over a one year period between January and December 2004. Samples were collected from sheep over a 13-month period between February 2005 and February 2006. The pig study recovered E. coli O157:H7 from 0.24 % (n=4) of 1680 porcine samples while the sheep study isolated the pathogen from 2.1 % (n=33) of 1600 ovine samples. PCR analysis of E. coli O157:H7 isolates determined that they carried the virulence genes vt1, vt2, eaeA and hlyA typically associated with clinical illness in humans. The results presented indicate that Irish sheep and pigs are reservoirs for E. coli O157:H7 which may be potentially harmful to humans.
    • Wheat flour properties and end product quality

      Dwyer, Elizabeth; O'Halloran, Grainne R.; Department of Agriculture, Food and the Marine (Teagasc, 1999-01)
      For pizza production, the flour quality values identified for the wheat cultivars, Promessa, Quintus (spring), and Soissons (winter) should be used as guidelines in selecting new cultivars and in the development of flour specifications. Similarly for biscuit production, compositional and rheological data for the cultivars, Riband,Woodstock (soft-milling) and Brigadier (hardmilling) should be used for identifying biscuit flours. The rheological properties of dough (as measured by the alveograph, extensograph and farinograph) did not relate to the baking quality for some wheat cultivars. However the rheological properties of the gel protein prepared from these flours explained their baking quality. The very high elastic moduli of these gels explained the basis of shrinkage of pizza bases produced from Baldus and Lavett flours and biscuits produced from Ritmo flour.
    • β-Lactoglobulin: A Whey Protein Fraction with Enhanced Functionality

      Mehra, Raj; Raggett, Elaine; O'Kennedy, Brendan; Kelly, Philip M.; Rawle, Donal (Teagasc, 2001-08-01)
      Infant formula manufacturers are progressively moving towards the development of the next generation of infant milk formula based on the inclusion of α-lactalbumin-enriched ingredients in order to further ‘humanise’ baby milk, as well as to reduce the allergenicity associated with the presence of β-lactoglobulin ( β-lg). Since α-lactalbumin represents one of the two major whey protein fractions in bovine milk, the viability of new fractionation processes currently under development will depend inter alia on the functional value that will attach to the remaining fraction, namely β-lg. Since this protein fraction influences whey protein functionality for the most part, it is to be expected that its availability in an enriched form should lead to further enhancement of its key functional properties, and stimulate further market opportunities. It is therefore imperative that attention is given to the processes and functionality of β-lg produced by different processing approaches. Hence, the overall objective of the project was: - To source and/or produce sufficient quantities of β-lg-enriched ingredients obtained through whey protein fractionation using different technologies, and to evaluate their functionality in model and food systems. - To investigate the influence of thermal treatments and ionic environment on the molecular structure of purified β-lg in order to understand their effect on protein functionality (gelation). - To improve the water-holding capacity of β-lg-enriched fraction so that it could compete more favourably with carbohydrate hydrocolloids in food applications. Downstream processing of β-lg was manipulated to influence the composition, and hence the functional properties of β-lg-enriched fractions. * β-Lg-enriched fractions had enhanced functional properties compared to WPC 75 and WPI. * β-Lg-enriched fraction has clear advantages over conventional whey protein products (WPC, WPI), in that it can be tailor-made to have specific functional properties desired in particular food products. * Water-binding properties of β-lg-enriched fraction could be improved by multi-stage heating.