Now showing items 1-20 of 2210

    • Predicting the Distribution of High Nature Value farmland in Ireland: IDEAL-HNV

      Finn, John; Sullivan, Caroline; O’hÚallacháin, Daire; Green, Stuart; Clifford, Brian; Matin, Shafique; Meredith, David; Moran, James (2020-08-28)
      Conference presentation outlining the IDEAL-HNV project
    • Expression, purification and antimicrobial activity of recombinant pediocin PA-1 M31L, a PA-1 derivative with enhanced stability

      Kuniyoshi, Taís Mayumi; O’ Connor, Paula M.; Arbulu, Sara; Mesa-Pereira, Beatriz; Pinheiro de Souza Oliveira, Ricardo; Hill, Collin; Ross, Paul; Cotter, Paul D. (Microbiology Society, 2019-03-01)
      Pediocin, the prototypical class IIa bacteriocin, is an efficient antilisterial molecule. Loss of pediocin PA-1 activity is attributed to methionine oxidation at position 31 and this can be overcome by substituting methionine for leucine (pediocin M31L). The aim of this study was to produce pediocin M31L with enhanced stability by recombinant expression in E. coli cells.
    • Validation of an Automated Body Condition Scoring System Using 3D Imaging

      O’ Leary, Niall O’; Leso, Lorenzo; Buckley, Frank; Kenneally, Jonathon; McSweeney, Diarmuid; Shalloo, Laurence; Science Foundation Ireland; Department of Agriculture, Food and the Marine; 13/IA/1977; 16/RC/3835 (MDPI AG, 2020-06-26)
      Body condition scores (BCS) measure a cow’s fat reserves and is important for management and research. Manual BCS assessment is subjective, time-consuming, and requires trained personnel. The BodyMat F (BMF, Ingenera SA, Cureglia, Switzerland) is an automated body condition scoring system using a 3D sensor to estimate BCS. This study assesses the BMF. One hundred and three Holstein Friesian cows were assessed by the BMF and two assessors throughout a lactation. The BMF output is in the 0–5 scale commonly used in France. We develop and report the first equation to convert these scores to the 1–5 scale used by the assessors in Ireland in this study ((0–5 scale × 0.38) + 1.67 → 1–5 scale). Inter-assessor agreement as measured by Lin’s concordance of correlation was 0.67. BMF agreement with the mean of the two assessors was the same as between assessors (0.67). However, agreement was lower for extreme values, particularly in over-conditioned cows where the BMF underestimated BCS relative to the mean of the two human observers. The BMF outperformed human assessors in terms of reproducibility and thus is likely to be especially useful in research contexts. This is the second independent validation of a commercially marketed body condition scoring system as far as the authors are aware. Comparing the results here with the published evaluation of the other system, we conclude that the BMF performed as well or better.
    • Screening commercial teat disinfectants against bacteria isolated from bovine milk using disk diffusion

      Fitzpatrick, Sarah Rose; Garvey, Mary; Jordan, Kieran; Flynn, Jim; O'Brien, Bernadette; Gleeson, David; Dairy Research Ireland; Teagasc Walsh Fellowship Programme; MKLS0006; 2016054 (Veterinary World, 2019-05-06)
      Background and Aim: Teat disinfection is an important tool in reducing the incidence of bovine mastitis. Identifying the potential mastitis-causing bacterial species in milk can be the first step in choosing the correct teat disinfectant product. The objective of this study was to screen commercial teat disinfectants for inhibition against mastitis-associated bacteria isolated from various types of milk samples. Materials and Methods: Twelve commercially available teat disinfectant products were tested, against 12 mastitis-associated bacteria strains isolated from bulk tank milk samples and bacterial strains isolated from clinical (n=2) and subclinical (n=3) quarter foremilk samples using the disk diffusion method. Results: There was a significant variation (7-30 mm) in bacterial inhibition between teat disinfection products, with products containing a lactic acid combination (with chlorhexidine or salicylic acid) resulting in the greatest levels of bacterial inhibition against all tested bacteria (p<0.05). Conclusion: In this study, combined ingredients in teat disinfection products had greater levels of bacterial inhibition than when the ingredients were used individually. The disk diffusion assay is a suitable screening method to effectively differentiate the bacterial inhibition of different teat disinfectant products.
    • Environmental footprint family to address local to planetary sustainability and deliver on the SDGs

      Vanham, Davy; Leip, Adrian; Galli, Alessandro; Kastner, Thomas; Bruckner, Martin; Uwizeye, Aimable; van Dijk, Kimo; Ercin, Ertug; Dalin, Carole; Brandão, Miguel; et al. (Elsevier BV, 2019-07-29)
      The number of publications on environmental footprint indicators has been growing rapidly, but with limited efforts to integrate different footprints into a coherent framework. Such integration is important for comprehensive understanding of environmental issues, policy formulation and assessment of trade-offs between different environmental concerns. Here, we systematize published footprint studies and define a family of footprints that can be used for the assessment of environmental sustainability. We identify overlaps between different footprints and analyse how they relate to the nine planetary boundaries and visualize the crucial information they provide for local and planetary sustainability. In addition, we assess how the footprint family delivers on measuring progress towards Sustainable Development Goals (SDGs), considering its ability to quantify environmental pressures along the supply chain and relating them to the water-energy-food-ecosystem (WEFE) nexus and ecosystem services. We argue that the footprint family is a flexible framework where particular members can be included or excluded according to the context or area of concern. Our paper is based upon a recent workshop bringing together global leading experts on existing environmental footprint indicators.
    • Fecal Microbiota Transplant From Highly Feed Efficient Donors Affects Cecal Physiology and Microbiota in Low- and High-Feed Efficient Chickens

      Metzler-Zebeli, Barbara U.; Siegerstetter, Sina-Catherine; Magowan, Elizabeth; Lawlor, Peadar G.; O′Connell, Niamh E.; Zebeli, Qendrim; European Union; 311794 (Frontiers Media SA, 2019-07-09)
      Fecal microbiota transplants (FMT) may be used to improve chicken’s feed efficiency (FE) via modulation of the intestinal microbiota and microbe-host signaling. This study investigated the effect of the administration of FMT from highly feed efficient donors early in life on the jejunal and cecal microbiota, visceral organ size, intestinal morphology, permeability, and expression of genes for nutrient transporters, barrier function and innate immune response in chickens of diverging residual feed intake (RFI; a metric for FE). Chicks (n = 110) were inoculated with the FMT or control transplant (CT) on 1, 6, and 9 days posthatch (dph), from which 56 chickens were selected on 30 dph as the extremes in RFI, resulting in 15 low and 13 high RFI chickens receiving the FMT and 14 low and 14 high RFI chickens receiving the CT. RFI rank and FMT only caused tendencies for alterations in the jejunal microbiota and only one unclassified Lachnospiraceae genus in cecal digesta was indicative of high RFI. By contrast, the FMT caused clear differences in the short-chain fatty acid (SCFA) profile in the crop and cecal microbiota composition compared to the CT, which indicated alterations in amylolytic, pullulanolytic and hemicellulolytic bacteria such as Lactobacillus, Dorea, and Ruminococcus. Moreover, the FMT caused alterations in intestinal development as indicated by the longer duodenum and shallower crypts in the ceca. From the observed RFI-associated variation, energy-saving mechanisms and moderation of the mucosal immune response were indicated by higher jejunal permeability, shorter villi in the ileum, and enhanced cecal expression of the anti-inflammatory cytokine IL10 in low RFI chickens. Relationships obtained from supervised multigroup data integration support that certain bacteria, including Ruminococcocaceae-, Lactobacillus-, and unclassified Clostridiales-phylotypes, and SCFA in jejunal and cecal digesta modulated expression levels of cytokines, tight-junction protein OCLN and nutrient transporters for glucose and SCFA uptake. In conclusion, results suggest that the intestine only played a moderate role for the RFI-associated variation of the present low and high RFI phenotypes, whereas modulating the early microbial colonization resulted in longlasting changes in bacterial taxonomic and metabolite composition as well as in host intestinal development.
    • Use of Lactic Acid Bacteria to Reduce Methane Production in Ruminants, a Critical Review

      Doyle, Natasha; Mbandlwa, Philiswa; Kelly, William J.; Attwood, Graeme; Li, Yang; Ross, R. Paul; Stanton, Catherine; Leahy, Sinead; European Union; Teagasc Walsh Fellowship Programme; et al. (Frontiers Media SA, 2019-10-01)
      Enteric fermentation in ruminants is the single largest anthropogenic source of agricultural methane and has a significant role in global warming. Consequently, innovative solutions to reduce methane emissions from livestock farming are required to ensure future sustainable food production. One possible approach is the use of lactic acid bacteria (LAB), Gram positive bacteria that produce lactic acid as a major end product of carbohydrate fermentation. LAB are natural inhabitants of the intestinal tract of mammals and are among the most important groups of microorganisms used in food fermentations. LAB can be readily isolated from ruminant animals and are currently used on-farm as direct-fed microbials (DFMs) and as silage inoculants. While it has been proposed that LAB can be used to reduce methane production in ruminant livestock, so far research has been limited, and convincing animal data to support the concept are lacking. This review has critically evaluated the current literature and provided a comprehensive analysis and summary of the potential use and mechanisms of LAB as a methane mitigation strategy. It is clear that although there are some promising results, more research is needed to identify whether the use of LAB can be an effective methane mitigation option for ruminant livestock.
    • Choice of artificial insemination beef bulls used to mate with female dairy cattle

      Berry, Donagh P.; Ring, S.C.; Twomey, A.J.; Evans, R.D.; Science Foundation Ireland; Department of Agriculture, Food and the Marine; 16/RC/3835 (Elsevier for American Dairy Science Association, 2020-02)
      Understanding the preferences of dairy cattle producers when selecting beef bulls for mating can help inform beef breeding programs as well as provide default parameters in mating advice systems. The objective of the present study was to characterize the genetic merit of beef artificial insemination (AI) bulls used in dairy herds, with particular reference to traits associated with both calving performance and carcass merit. The characteristics of the beef AI bulls used were compared with those of the dairy AI bulls used on the same farms. A total of 2,733,524 AI records from 928,437 females in 5,967 Irish dairy herds were used. Sire predicted transmitting ability (PTA) values and associated reliability values for calving performance and carcass traits based on national genetic evaluations from prior to the insemination were used. Fixed effects models were used to relate both genetic merit and the associated reliability of the dairy and beef bulls used on the farm with herd size, the extent of Holstein-Friesian × Jersey crossbreeding adopted by the herd, whether the herd used a technician insemination service or do-ityourself, and the parity of the female mated. The mean direct calving difficulty PTA of the beef bulls used was 1.85 units higher than that of the dairy bulls but with over 3 times greater variability in the beef bulls. This 1.85 units equates biologically to an expectation of 1.85 more dystocia events per 100 dairy cows mated in the beef × dairy matings. The mean calving difficulty PTA of the dairy AI bulls used reduced with increasing herd size, whereas the mean calving difficulty PTA of the beef AI bulls used increased as herd size increased from 75 cows or fewer to 155 cows; the largest herds (>155 cows) used notably easier-calving beef bulls, albeit the calving difficulty PTA of the beef bulls was 3.33 units versus 1.67 units for the dairy bulls used in these herds. Although we found a general tendency for larger herds to use dairy AI bulls with lower reliability, this trend was not obvious in the beef AI bulls used. Irrespective of whether dairy or beef AI bulls were considered, herds that operated more extensive Holstein-Friesian × Jersey crossbreeding (i.e., more than 50% crossbred cows) used, on average, easier calving, shorter gestationlength bulls with lighter expected progeny carcasses of poorer conformation. Mean calving difficulty PTA of dairy bulls used increased from 1.39 in heifers to 1.79 in first-parity cows and to 1.82 in second-parity cows, remaining relatively constant thereafter. In contrast, the mean calving difficulty PTA of the beef bulls used increased consistently with cow parity. Results from the present study demonstrate a clear difference in the mean acceptable genetic merit of beef AI bulls relative to dairy AI bulls but also indicates that these acceptable limits vary by herd characteristics.
    • Differences in intestinal size, structure, and function contributing to feed efficiency in broiler chickens reared at geographically distant locations

      Metzler-Zebeli, B.U.; Magowan, E.; Hollmann, M.; Ball, M.E.E.; Molnár, A.; Witter, K.; Ertl, R.; Hawken, R.J.; Lawlor, Peadar G.; O’Connell, N.E.; et al. (Elsevier BV, 2018-02)
      The contribution of the intestinal tract to differences in residual feed intake (RFI) has been inconclusively studied in chickens so far. It is also not clear if RFI-related differences in intestinal function are similar in chickens raised in different environments. The objective was to investigate differences in nutrient retention, visceral organ size, intestinal morphology, jejunal permeability and expression of genes related to barrier function, and innate immune response in chickens of diverging RFI raised at 2 locations (L1: Austria; L2: UK). The experimental protocol was similar, and the same dietary formulation was fed at the 2 locations. Individual BW and feed intake (FI) of chickens (Cobb 500FF) were recorded from d 7 of life. At 5 wk of life, chickens (L1, n = 157; L2 = 192) were ranked according to their RFI, and low, medium, and high RFI chickens were selected (n = 9/RFI group, sex, and location). RFI values were similar between locations within the same RFI group and increased by 446 and 464 g from low to high RFI in females and males, respectively. Location, but not RFI rank, affected growth, nutrient retention, size of the intestine, and jejunal disaccharidase activity. Chickens from L2 had lower total body weight gain and mucosal enzyme activity but higher nutrient retention and longer intestines than chickens at L1. Parameters determined only at L1 showed increased crypt depth in the duodenum and jejunum and enhanced paracellular permeability in low vs. high RFI females. Jejunal expression of IL1B was lower in low vs. high RFI females at L2, whereas that of TLR4 at L1 and MCT1 at both locations was higher in low vs. high RFI males. Correlation analysis between intestinal parameters and feed efficiency metrics indicated that feed conversion ratio was more correlated to intestinal size and function than was RFI. In conclusion, the rearing environment greatly affected intestinal size and function, thereby contributing to the variation in chicken RFI observed across locations.
    • A Live Bio-Therapeutic for Mastitis, Containing Lactococcus lactis DPC3147 With Comparable Efficacy to Antibiotic Treatment

      Kitching, Michael; Mathur, Harsh; Flynn, James; Byrne, Noel; Dillon, Pat; Sayers, Riona; Rea, Mary C.; Hill, Colin; Ross, R. Paul; Enterprise Ireland; et al. (Frontiers Media SA, 2019-09-27)
      Bovine mastitis is an ongoing significant concern in the dairy and agricultural industry resulting in substantial losses in milk production and revenue. Among the predominant etiological agents of bovine mastitis are Staphylococcus aureus, Streptococcus uberis, Streptococcus dysgalactiae, and Escherichia coli. Currently, the treatment of choice for bovine mastitis involves the use of commercial therapeutic antibiotic formulations such as TerrexineTM, containing both kanamycin and cephalexin. Such antibiotics are regularly administered in more than one dose resulting in the withholding of milk for processing for a number of days. Here, we describe the optimization of a formulation of Lactococcus lactis DPC3147, that produces the two-component bacteriocin lacticin 3147, in a liquid paraffin-based emulsion (formulation hereafter designated ‘live bio-therapeutic’) for the first time and compare it to the commercial antibiotic formulation TerrexineTM, with a view to treating cows with clinical/sub-clinical mastitis. Critically, in a field trial described here, this ‘ready-to-use’ emulsion containing live L. lactis DPC3147 cells exhibited comparable efficacy to TerrexineTM when used to treat mastitic cows. Furthermore, we found that the L. lactis cells within this novel emulsion-based formulation remained viable for up to 5 weeks, when stored at 4, 22, or 37◦C. The relative ease and cost-effective nature of producing this ‘live bio-therapeutic’ formulation, in addition to its enhanced shelf life compared to previous aqueous-based formulations, indicate that this product could be a viable alternative therapeutic option for bovine mastitis. Moreover, the singledose administration of this ‘live bio-therapeutic’ formulation is a further advantage, as it can expedite the return of the milk to the milk pool, in comparison to some commercial antibiotics. Overall, in this field trial, we show that the live bio-therapeutic formulation displayed a 47% cure rate compared to a 50% cure rate for a commercial antibiotic control, with respect to curing cows with clinical/sub-clinical mastitis. The study suggests that a larger field trial to further demonstrate efficacy is warranted.
    • Food for thought: The role of nutrition in the microbiota-gut–brain axis

      Oriach, Clara Seira; Robertson, Ruairi C.; Stanton, Catherine; Cryan, John F.; Dinan, Timothy G.; Science Foundation Ireland; Health Research Board of Ireland; Sea Change Strategy; NutraMara programme; SMART FOOD project; et al. (Elsevier BV, 2016-04)
      Recent research has provided strong evidence for the role of the commensal gut microbiota in brain function and behaviour. Many potential pathways are involved in this bidirectional communication between the gut microbiota and the brain such as immune mechanisms, the vagus nerve and microbial neurometabolite production. Dysbiosis of gut microbial function has been associated with behavioural and neurophysical deficits, therefore research focused on developing novel therapeutic strategies to treat psychiatric disorders by targeting the gut microbiota is rapidly growing. Numerous factors can influence the gut microbiota composition such as health status, mode of birth delivery and genetics, but diet is considered among the most crucial factors impacting on the human gut microbiota from infancy to old age. Thus, dietary interventions may have the potential to modulate psychiatric symptoms associated with gut–brain axis dysfunction. Further clinical and in vivo studies are needed to better understand the mechanisms underlying the link between nutrition, gut microbiota and control of behaviour and mental health.
    • Fortified Blended Food Base: Effect of Co-Fermentation Time on Composition, Phytic Acid Content and Reconstitution Properties

      Shevade, Ashwini; O’Callaghan, Yvonne; O’Brien, Nora; O’Connor, Tom; Guinee, Timothy; Department of Agriculture, Food and the Marine; 14/F/805 (MDPI AG, 2019-09-03)
      Dehydrated blends of dairy-cereal combine the functional and nutritional properties of two major food groups. Fortified blended food base (FBFB) was prepared by blending fermented milk with parboiled wheat, co-fermenting the blend at 35 ◦C, shelf-drying and milling. Increasing co-fermentation time from 0 to 72 h resulted in powder with lower lactose, phytic acid and pH, and higher contents of lactic acid and galactose. Simultaneously, the pasting viscosity of the reconstituted base (16.7%, w/w, total solids) and its yield stress (σ0), consistency index (K) and viscosity on shearing decreased significantly. The changes in some characteristics (pH, phytic acid, η120) were essentially complete after 24 h co-fermentation while others (lactose, galactose and lactic acid, pasting viscosities, flowability) proceeded more gradually over 72 h. The reduction in phytic acid varied from 40 to 58% depending on the pH of the fermented milk prior to blending with the parboiled cereal. The reduction in phytic acid content of milk (fermented milk)-cereal blends with co-fermentation time is nutritionally desirable as it is conducive to an enhanced bioavailability of elements, such as Ca, Mg, Fe and Zn in milk-cereal blends, and is especially important where such blends serve as a base for fortified-blended foods supplied to food-insecure regions
    • Oligosaccharides Isolated from MGO™ Manuka Honey Inhibit the Adhesion of Pseudomonas aeruginosa, Escherichia Coli O157:H7 and Staphylococcus Aureus to Human HT-29 cells

      Lane, Johnathan A.; Calonne, Julie; Slattery, Helen; Hickey, Rita M. (MDPI AG, 2019-10-01)
      Historically, honey is known for its anti-bacterial and anti-fungal activities and its use for treatment of wound infections. Although this practice has been in place for millennia, little information exists regarding which manuka honey components contribute to the protective nature of this product. Given that sugar accounts for over 80% of honey and up to 25% of this sugar is composed of oligosaccharides, we have investigated the anti-infective activity of manuka honey oligosaccharides against a range of pathogens. Initially, oligosaccharides were extracted from a commercially-available New Zealand manuka honey—MGO™ Manuka Honey (Manuka Health New Zealand Ltd.)—and characterized by High pH anion exchange chromatography coupled with pulsed amperiometric detection. The adhesion of specific pathogens to the human colonic adenocarcinoma cell line, HT-29, was then assessed in the presence and absence of these oligosaccharides. Manuka honey oligosaccharides significantly reduced the adhesion of Escherichia coli O157:H7 (by 40%), Staphylococcus aureus (by 30%), and Pseudomonas aeruginosa (by 52%) to HT-29 cells. This activity was then proven to be concentration dependent and independent of bacterial killing. This study identifies MGO™ Manuka Honey as a source of anti-infective oligosaccharides for applications in functional foods aimed at lowering the incidence of infectious diseases.
    • Online Prediction of Physico-Chemical Quality Attributes of Beef Using Visible—Near-Infrared Spectroscopy and Chemometrics

      Sahar, Amna; Allen, Paul; Sweeney, Torres; Cafferky, Jamie; Downey, Gerard; Cromie, Andrew; Hamill, Ruth; Department of Food, Agriculture and the Marine; 11/SF/311 (MDPI AG, 2019-10-23)
      The potential of visible–near-infrared (Vis–NIR) spectroscopy to predict physico-chemical quality traits in 368 samples of bovine musculus longissimus thoracis et lumborum (LTL) was evaluated. A fibre-optic probe was applied on the exposed surface of the bovine carcass for the collection of spectra, including the neck and rump (1 h and 2 h post-mortem and after quartering, i.e., 24 h and 25 h post-mortem) and the boned-out LTL muscle (48 h and 49 h post-mortem). In parallel, reference analysis for physico-chemical parameters of beef quality including ultimate pH, colour (L, a*, b*), cook loss and drip loss was conducted using standard laboratory methods. Partial least-squares (PLS) regression models were used to correlate the spectral information with reference quality parameters of beef muscle. Different mathematical pre-treatments and their combinations were applied to improve the model accuracy, which was evaluated on the basis of the coefficient of determination of calibration (R2C) and cross-validation (R2CV) and root-mean-square error of calibration (RMSEC) and cross-validation (RMSECV). Reliable cross-validation models were achieved for ultimate pH (R2CV: 0.91 (quartering, 24 h) and R2CV: 0.96 (LTL muscle, 48 h)) and drip loss (R2CV: 0.82 (quartering, 24 h) and R2CV: 0.99 (LTL muscle, 48 h)) with lower RMSECV values. The results show the potential of Vis–NIR spectroscopy for online prediction of certain quality parameters of beef over different time periods.
    • Ultrasound-Assisted Marination: Role of Frequencies and Treatment Time on the Quality of Sodium-Reduced Poultry Meat

      Inguglia, Elena S.; Burgess, Catherine M.; Kerry, Joseph P.; Tiwari, Brijesh K.; Teagasc Walsh Fellowship Programme (MDPI AG, 2019-10-11)
      The objective of this study was to evaluate the influence of high-power ultrasound (US) to accelerate marination of chicken breast; the effect of ultrasonic frequencies and marination times were investigated on samples containing full sodium levels (FS) or 25% sodium reduction, either by reducing NaCl (R50) or by its partial substitution with KCl (SR). Chicken breasts were marinated in plastic bags immersed in an ultrasonic bath operating with a frequency of 25, 45 or 130 kHz for 1, 3 or 6 h at a temperature of 2.5 ± 0.5 ◦C. Chicken marinated using US had a significantly higher uptake (p < 0.05) of sodium compared to control samples (no US) marinated for the same amount of time. No significant changes were observed in the quality parameters of sonicated chicken samples compared to controls. However, significant decreases (p < 0.05) in lipid oxidation were observed in SR samples when treated by US. These results suggest the use of ultrasound in the meat processing industry as a novel technology for enhancing marination processes and formulation of reduced sodium meat products.
    • The Effect of High Pressure Processing on Polyphenol Oxidase Activity, Phytochemicals and Proximate Composition of Irish Potato Cultivars

      Tsikrika, Konstantina; O’Brien, Nora; Rai, Dilip K.; Department of Agriculture, Food and Marine; 17/F/299 (MDPI AG, 2019-10-19)
      Polyphenol oxidase (PPO) activity, proximate composition, and phytochemicals were determined in four common Irish potato cultivars following a high pressure processing (HPP) at 600 MPa for 3 min. PPO activity was significantly (p < 0.05) lower in all HPP treated samples, while the overall proximate composition was not affected. The total phenolic content was significantly higher in the HPP treated samples. Chlorogenic acid levels significantly decreased with simultaneous increase of caffeic acid and p-coumaric acid levels upon HPP treatment. No significant changes were observed in rutin and ferulic acid levels, although their levels varied, depending on the potato cultivars, while the levels of cytotoxic glycoalkaloids (α-solanine and α-chaconine) remained unaltered.
    • Effect of Diet on the Vitamin B Profile of Bovine Milk-Based Protein Ingredients

      Magan, Jonathan B.; O’Callaghan, Tom F.; Zheng, Jiamin; Zhang, Lun; Mandal, Rupasri; Hennessy, Deirdre; Fenelon, Mark A.; Wishart, David S.; Kelly, Alan L.; McCarthy, Noel A.; et al. (MDPI AG, 2020-05-04)
      The influence of diet on the water-soluble vitamin composition of skim milk powder and whey protein ingredients produced from the milk of cows fed pasture or concentrate-based diets was examined. Fifty-one Holstein-Friesian cows were randomly assigned into three diets (n = 17) consisting of outdoor grazing of perennial ryegrass (GRS), perennial ryegrass/white clover (CLV), or indoor feeding of total mixed ration (TMR) for an entire lactation. Raw mid-lactation milk from each group was processed into skim milk powder and further processed to yield micellar casein whey and acid whey. Sweet whey was also produced by renneting of pasteurised whole milk from each system. The water-soluble vitamin profile of each sample was analysed using a combination of direct injection mass spectrometry and reverse-phase liquid chromatography–mass spectrometry. Vitamin B3 and B3-amide concentrations were significantly higher (p < 0.05) in TMR-derived samples than in those from CLV and GRS, respectively. Vitamin B1, B2, and B7 concentrations were significantly higher in GRS and CLV-derived samples than those from TMR. Significant differences in vitamins B1, B2, and B3-amide were also observed between protein ingredient types. This study indicates that bovine feeding systems have a significant effect on B vitamin composition across a range of protein ingredient types.
    • Biogeography of arbuscular mycorrhizal fungal spore traits along an aridity gradient, and responses to experimental rainfall manipulation

      Deveautour, Coline; Chieppa, Jeff; Nielsen, Uffe N.; Boer, Matthias M.; Mitchell, Christopher; Horn, Sebastian; Power, Sally A.; Guillen, Alberto; Bennett, Alison E.; Powell, Jeff R.; et al. (Elsevier BV, 2020-08)
      Spore size, colour and melanin content are hypothesised to be functional in relation to environmental stress. Here, we studied AM fungal spores in arid environments of Australia and in an experimental platform simulating altered rainfall. We used microscopy and image analysis to measure spore colour and size, and a quantitative colorimetric assay to estimate melanin content in spores. In arid sites, melanin content tended to increase with increasing aridity. We observed a large range of spore colours at all sites but found a higher proportion of both dark and light spores, and fewer intermediate colours, in drier sites. Spore abundance and size varied among sites, but neither were related to aridity. In the experimental platform established in a grassland, we found no evidence that altered rainfall influenced spore traits. This study identifies traits associated with environmental stress to inform future work into AM fungal life history and assembly processes.
    • A standardised static in vitro digestion method suitable for food – an international consensus

      Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. (Royal Society of Chemistry (RSC), 2014-04-07)
      Simulated gastro-intestinal digestion is widely employed in many fields of food and nutritional sciences, as conducting human trials are often costly, resource intensive, and ethically disputable. As a consequence, in vitro alternatives that determine endpoints such as the bioaccessibility of nutrients and non-nutrients or the digestibility of macronutrients (e.g. lipids, proteins and carbohydrates) are used for screening and building new hypotheses. Various digestion models have been proposed, often impeding the possibility to compare results across research teams. For example, a large variety of enzymes from different sources such as of porcine, rabbit or human origin have been used, differing in their activity and characterization. Differences in pH, mineral type, ionic strength and digestion time, which alter enzyme activity and other phenomena, may also considerably alter results. Other parameters such as the presence of phospholipids, individual enzymes such as gastric lipase and digestive emulsifiers vs. their mixtures (e.g. pancreatin and bile salts), and the ratio of food bolus to digestive fluids, have also been discussed at length. In the present consensus paper, within the COST Infogest network, we propose a general standardised and practical static digestion method based on physiologically relevant conditions that can be applied for various endpoints, which may be amended to accommodate further specific requirements. A frameset of parameters including the oral, gastric and small intestinal digestion are outlined and their relevance discussed in relation to available in vivo data and enzymes. This consensus paper will give a detailed protocol and a line-by-line, guidance, recommendations and justifications but also limitation of the proposed model. This harmonised static, in vitro digestion method for food should aid the production of more comparable data in the future.
    • A bio-economic model for cost analysis of alternative management strategies in beef finishing systems

      Kamilaris, C.; Dewhurst, R.J.; Vosough Ahmadi, B.; Crosson, Paul; Alexander, P.; SRUC PhD studentship; Teagasc Walsh Fellowship Programme; Scottish Government (Elsevier BV, 2019-10-26)
      Global population growth together with rising incomes is increasing the demand for meat-based products. This increases the need to optimize livestock production structures, whilst ensuring viable returns for the farmers. On a global scale, beef producers need tools to assist them to produce more high-quality products whilst maintaining economic efficiency. The Grange Scottish Beef Model (GSBM) was customized to simulate beef finishing enterprises using data from Scottish beef finishing studies, as well as agricultural input and output price datasets. Here we describe the model and its use to determine the cost-effectiveness of alternative current management practices (e.g. forage- and cereal-based finishing) and slaughter ages (i.e. short, medium or long finishing duration). To better understand drivers of profitability in beef finishing systems, several scenarios comparing finishing duration, gender, genetic selection of stock for growth rate or feed efficiency, as well as financial support were tested. There are opportunities for profitable and sustainable beef production in Scotland, for both cereal and forage based systems, particularly when aiming for a younger age profile at slaughtering. By careful choice of finishing systems matched to animal potential, as well as future selection of high performing and feed efficient cattle, beef finishers will be able to enhance performance and increase financial returns.