Now showing items 1-20 of 1738

    • Comparative grazing behaviour of lactating suckler cows of contrasting genetic merit and genotype

      McCabe, S.; McHugh, Noirin; O'Connell, Niamh E.; Prendiville, Robert; Department of Agriculture, Food and the Marine; RSF 13/S4/96 (Elsevier, 2018-12-04)
      The objective of this study was to determine if differences in grazing behaviour exist between lactating suckler cows diverse in genetic merit for the national Irish Replacement index and of two contrasting genotypes. Data from 103 cows: 41 high and 62 low genetic merit, 43 beef and 60 beef x dairy (BDX) cows were available over a single grazing season in 2015. Milk yield, grass dry matter intake (GDMI), cow live weight (BW) and body condition score (BCS) were recorded during the experimental period, with subsequent measures of production efficiency extrapolated. Grazing behaviour data were recorded twice in conjunction with aforementioned measures, using Institute of Grassland and Environmental Research headset behaviour recorders. The effect of genotype and cow genetic merit during mid- and late-lactation on grazing behaviour phenotypes, milk yield, BW, BCS and GDMI were estimated using linear mixed models. Genetic merit had no significant effect on any production parameters investigated, with the exception that low genetic merit had a greater BCS than high genetic merit cows. Beef cows were heavier, had a greater BCS but produced less milk per day than BDX. The BDX cows produced more milk per 100 kg BW and per unit intake and had greater GDMI, intake per bite and rate of GDMI per 100 kg BW than beef cows. High genetic merit cows spent longer grazing and took more bites per day but had a lower rate of GDMI than low genetic merit cows, with the same trend found when expressed per unit of BW. High genetic merit cows spent longer grazing than low genetic merit cows when expressed on a per unit intake basis. Absolute rumination measures were similar across cow genotype and genetic merit. When expressed per unit BW, BDX cows spent longer ruminating per day compared to beef. However, on a per unit intake basis, beef cows ruminated longer and had more mastications than BDX. Intake per bite and rate of intake was positively correlated with GDMI per 100 kg BW. The current study implies that despite large differences in grazing behaviour between cows diverse in genetic merit, few differences were apparent in terms of production efficiency variables extrapolated. Conversely, differences in absolute grazing and ruminating behaviour measurements did not exist between beef cows of contrasting genotype. However, efficiency parameters investigated illustrate that BDX will subsequently convert herbage intake more efficiently to milk production.
    • Fluorescence-based analyser as a rapid tool for determining soluble protein content in dairy ingredients and infant milk formula

      Henihan, Lisa E.; O'Donnell, Colm P.; Esquerre, Carlos; Murphy, Eoin; O'Callaghan, Donal; Department of Agriculture, Food and the Marine; 11/F/052 (Elsevier, 2018-12-03)
      Abstract: Milk protein, in particular native whey protein, is of interest to dairy manufacturers as a measure of functional and nutritional quality. However, quantification of soluble whey protein (SP) is time consuming; giving rise to the need to develop rapid, accurate, and portable at-line process analytical technology. In this study, the performance of a fluorescence-based analyser(F) (Amaltheys II, Spectralys Innovations, France) was evaluated for quantification of SPF and whey protein nitrogen index (WPNI)F in skim milk, whey protein concentrate and infant formula powders. Rehydration of powders prior to analysis was a key factor for ensuring repeatability and reproducibility. A comparison of the analyser with reference methods for SPF and WPNIF resulted in coefficient of determination (R2) > 0.993 for both SPKjeldahl method and WPNIGEA. The results show the fluorescence-based analyser to be rapid, compact, and accurate device, suited for providing reliable support to dairy ingredient and infant formula manufacturers. Industrial relevance: The fluorescence based analysis investigated in this article is suitable for application in the dairy industry where it can be used as a rapid, at-line PAT tool for both liquid and powder samples. The technology has the potential to replace well-established methods for measurement of soluble protein. The main benefit to industry is the ability to respond more rapidly to variations in soluble protein without compromising on the accuracy associated with more time consuming methods.
    • Multi-scale structure, pasting and digestibility of adlay (Coixlachryma-jobi L.) seed starch

      Chen, Jicheng; Chen, Yazhen; Ge, Huifang; Wu, Chunhua; Pang, Jie; Miao, Song; Marine High-Tech Industry in Fujian Province; Fujian Natural Science Foundation; Fujian Agriculture and Forestry University; [2004] 03; et al. (Elsevier BV, 2018-11-28)
      The hierarchical structure, pasting and digestibility of adlay seed starch (ASS) were investigated compared with maize starch (MS) and potato starch (PS). ASS exhibited round or polyglonal morphology with apparent pores/channels on the surface. It had a lower amylose content, a looser and more heterogeneous C-type crystalline structure, a higher crystallinity, and a thinner crystalline lamellae. Accordingly, ASS showed a higher slowly digestible starch content combined with less resistant starch fractions, and a decreased pasting temperature, a weakened tendency to retrogradation and an increased pasting stability compared with those of MS and PS. The ASS structure-functionality relationship indicated that the amylose content, double helical orders, crystalline lamellar structure, and surface pinholes should be responsible for ASS specific functionalities including pasting behaviors and in vitro digestibility. ASS showed potential applications in health-promoting foods which required low rearrangement during storage and sustainable energy-providing starch fractions.
    • Emulsifying properties of hemp proteins: Effect of isolation technique

      Dapčević-Hadnađev, Tamara; Dizdar, Manda; Pojić, Milica; Krstonošić, Veljko; Zychowski, Lisa M.; Hadnađev, Miroslav; Provincial Secretariat for Higher Education and Scientific Research, Republic of Serbia; European Union; 142-451-2458/2018-01/02; 692276 (Elsevier, 2018-12-03)
      Hemp protein was isolated from hemp seed meal using two different isolation procedures: alkali extraction/isoelectric precipitation (HPI) and micellization (HMI). The ability of these proteins to form and stabilize 10% (w/w) sunflower oil-in-water emulsions (at pH = 3.0) was studied at three different concentrations, 0.25, 0.75 and 1.5% (w/w), by monitoring emulsion droplet size distribution, microstructural and morphological properties, rheological behaviour and stability against flocculation, coalescence and creaming. In addition, hemp proteins were analysed for water solubility, denaturation degree and surface/interfacial activity. HMI protein, which was found to be less denatured after isolation, exhibited higher solubility and slightly higher surface/interfacial activity than HPI protein. HMI emulsions possessed a smaller volume mean droplet diameter (d4,3 = 1.92–3.42 μm in 2% SDS) than HPI emulsions (d4,3 = 2.25–15.77 μm in 2% SDS). While HMI stabilized emulsions were characterized with individual droplets covered by protein film, both confocal laser scanning microscopy and flocculation indices indicated occurrence of bridging flocculation in HPI stabilized emulsions. Protein aggregation, which induced flocculation of the droplets, contributed to higher apparent viscosity of HPI stabilized emulsions compared to HMI stabilized emulsions. Interestingly, emulsions stabilized with 1.5% (w/w) HPI exhibited much better creaming and coalescence stability than other emulsions due to the formation of a weak transient network of floccules and higher continuous phase viscosity which both suppressed the movement of the droplets.
    • Separation of Oligosaccharides from Lotus Seeds via Medium-pressure Liquid Chromatography Coupled with ELSD and DAD

      Lu, Xu; Zheng, Zhichang; Miao, Song; Li, Huang; Guo, Zebin; Zhang, Yi; Zheng, Yafeng; Zheng, Baodong; Xiao, Jianbo; National Natural Science Foundation of China; et al. (Springer Science, 2017-03-09)
      Lotus seeds were identified by the Ministry of Public Health of China as both food and medicine. One general function of lotus seeds is to improve intestinal health. However, to date, studies evaluating the relationship between bioactive compounds in lotus seeds and the physiological activity of the intestine are limited. In the present study, by using medium pressure liquid chromatography coupled with evaporative light-scattering detector and diode-array detector, five oligosaccharides were isolated and their structures were further characterized by electrospray ionization-mass spectrometry and gas chromatography-mass spectrometry. In vitro testing determined that LOS3-1 and LOS4 elicited relatively good proliferative effects on Lactobacillus delbrueckii subsp. bulgaricus. These results indicated a structure-function relationship between the physiological activity of oligosaccharides in lotus seeds and the number of probiotics applied, thus providing room for improvement of this particular feature. Intestinal probiotics may potentially become a new effective drug target for the regulation of immunity.
    • Marine Gelatine from Rest Raw Materials

      Milovanovic, Ivan; Hayes, Maria; Bord Iascaigh Mhara (BIM); DAFM/07/2017/PDFP (MDPI, 2018-11-27)
      In recent years, demand for consumption of marine foods, and especially fish, has substantially increased worldwide. The majority of collagen available is sourced from mammalian-derived products. Although fish derived gelatine is a viable alternative to mammalian sourced gelatine, there are certain limitations related to the use of fish gelatine that include odour, colour, functional properties, and consistency in its amino acid composition. Chemicals used for pre-treatment, as well as extraction conditions such as temperature and time, can influence the length of polypeptide chains that result and the functional properties of the gelatine. Compared to traditional sources, gelatines derived from fish show significant differences in chemical and physical properties, and great care should be paid to optimization of the production process in order to obtain a product with the best properties for intended applications. The focus of this review is to explore the feasibility of producing gelatine sourced from marine processing by-products using different pre-treatment and extraction strategies with the aim of improving the techno-functional properties of the final product and improving the clean-label status of gelatines. The bioactivities of gelatine hydrolysates are also discussed.
    • Phosphorus and nitrogen losses from temperate permanent grassland on clay-loam soil after the installation of artificial mole and gravel mole drainage

      Valbuena-Parralejo, N.; Fenton, Owen; Tuohy, Patrick; Williams, M.; Lanigan, Gary; Humphreys, James; Teagasc Walsh Fellowship Programme; Department of Agriculture, Food and the MArine; RSF11152 (Elsevier, 2018-12-14)
      Mole (M) and gravel-mole (GM) drainage systems improve the permeability of soils with high clay contents. They collect and carry away infiltrating water during episodic rainfall events. Characterisation of nutrient fluxes (concentration and flows) in overland flow (OF) and in mole drain flow (MF) across sequential rainfall events is important for environmental assessment of such drainage systems. The objective of this study is to assess the impact of drainage systems on soil nutrient losses. Three treatments were imposed on grazed permanent grassland on a clay loam soil in Ireland (52°30′N, 08°12′W) slope 1.48%: undrained control (C), mole drainage (M) and gravel mole drainage (GM). Plots (100 m × 15 m) were arranged in a randomized complete block design with four replicated blocks. Nitrogen (N) and phosphorus (P) concentrations in OF, MF and groundwater (GW) were measured from each plot over 15 consecutive rainfall events. The results showed that M and GM (P < 0.05) deepened the watertable depth and decreased OF. M and GM increased losses of nitrate-N (22%) and ammonium-N (14%) in GW. Nitrate-N concentrations from all the flow pathways (mean and standard error (s.e.): 0.99 s.e. 0.10 mg L−1) were well below the 11.3 mg L−1 threshold for drinking water. Ammonium-N concentrations from all the flow pathways (mean: 0.64 s.e. 0.14 mg L−1) exceeded drinking water quality standards. On the other hand M and GM lowered total P losses (mean annual losses from C, M and GM: 918, 755 and 853 s.e. 14.1 g ha−1 year−1) by enhancing soil P sorption. Hence M and GM can be implemented on farms under similar management to that described in the present study with a minor impact on N (increased concentration on averaged 18% to GW) and P (reduced by on avenged 114 g ha−1 year−1).
    • Production of protein extracts from Swedish red, green, and brown seaweeds, Porphyra umbilicalis Kützing, Ulva lactuca Linnaeus, and Saccharina latissima (Linnaeus) J. V. Lamouroux using three different methods

      Harrysson, Hanna; Hayes, Maria; Eimer, Friederike; Carlsson, Nils-Gunnar; Toth, Gunilla B.; Undeland, Ingrid; Swedish Foundation for Strategic Research; Swedish Research Council Formas; 2820005; 21210034 (Springer Science, 2018-04-28)
      The demand for vegetable proteins increases globally and seaweeds are considered novel and promising protein sources. However, the tough polysaccharide-rich cell walls and the abundance of polyphenols reduce the extractability and digestibility of seaweed proteins. Therefore, food grade, scalable, and environmentally friendly protein extraction techniques are required. To date, little work has been carried out on developing such methods taking into consideration the structural differences between seaweed species. In this work, three different protein extraction methods were applied to three Swedish seaweeds (Porphyra umbilicalis, Ulva lactuca, and Saccharina latissima). These methods included (I) a traditional method using sonication in water and subsequent ammonium sulfate-induced protein precipitation, (II) the pH-shift protein extraction method using alkaline protein solubilization followed by isoelectric precipitation, and (III) the accelerated solvent extraction (ASE®) method where proteins are extracted after pre-removal of lipids and phlorotannins. The highest protein yields were achieved using the pH-shift method applied to P. umbilicalis (22.6 ± 7.3%) and S. latissima (25.1 ± 0.9%). The traditional method resulted in the greatest protein yield when applied to U. lactuca (19.6 ± 0.8%). However, the protein concentration in the produced extracts was highest for all three species using the pH-shift method (71.0 ± 3.7%, 51.2 ± 2.1%, and 40.7 ± 0.5% for P. umbilicalis, U. lactuca, and S. latissima, respectively). In addition, the pH-shift method was found to concentrate the fatty acids in U. lactuca and S. latissima by 2.2 and 1.6 times, respectively. The pH-shift method can therefore be considered a promising strategy for producing seaweed protein ingredients for use in food and feed.
    • Food Proteins and Bioactive Peptides: New and Novel Sources, Characterisation Strategies and Applications

      Hayes, Maria (MDPI, 2018-03-14)
      By 2050, the world population is estimated to reach 9.6 billion, and this growth continues to require more food, particularly proteins. Moreover, the Westernisation of society has led to consumer demand for protein products that taste good and are convenient to consume, but additionally have nutritional and health maintenance and well-being benefits. Proteins provide energy, but additionally have a wide range of functions from enzymatic activities in the body to bioactivities including those associated with heart health, diabetes-type 2-prevention and mental health maintenance; stress relief as well as a plethora of other health beneficial attributes. Furthermore, proteins play an important role in food manufacture and often provide the binding, water- or oil-holding, emulsifying, foaming or other functional attributes required to ensure optimum sensory and taste benefits for the consumer. The purpose of this issue is to highlight current and new protein sources and their associated functional, nutritional and health benefits as well as best practices for quantifying proteins and bioactive peptides in both a laboratory and industry setting. The bioaccessibility, bioavailability and bioactivities of proteins from dairy, cereal and novel sources including seaweeds and insect protein and how they are measured and the relevance of protein quality measurement methods including the Protein Digestibility Amino Acid Score (PDCAAS) and Digestible Indispensable Amino Acid Score (DIAAS) are highlighted. In addition, predicted future protein consumption trends and new markets for protein and peptide products are discussed.
    • Comparison of modelling techniques for milk-production forecasting

      Murphy, Michael D.; O’Mahony, Michéal J.; Shalloo, Laurence; French, Padraig; Upton, John (Elsevier for American Dairy Science Association, 2014-04-13)
      The objective of this study was to assess the suitability of 3 different modeling techniques for the prediction of total daily herd milk yield from a herd of 140 lactating pasture-based dairy cows over varying forecast horizons. A nonlinear auto-regressive model with exogenous input, a static artificial neural network, and a multiple linear regression model were developed using 3 yr of historical milk-production data. The models predicted the total daily herd milk yield over a full season using a 305-d forecast horizon and 50-, 30-, and 10-d moving piecewise horizons to test the accuracy of the models over long- and short-term periods. All 3 models predicted the daily production levels for a full lactation of 305 d with a percentage root mean square error (RMSE) of ≤12.03%. However, the nonlinear auto-regressive model with exogenous input was capable of increasing its prediction accuracy as the horizon was shortened from 305 to 50, 30, and 10 d [RMSE (%) = 8.59, 8.1, 6.77, 5.84], whereas the static artificial neural network [RMSE (%) = 12.03, 12.15, 11.74, 10.7] and the multiple linear regression model [RMSE (%) = 10.62, 10.68, 10.62, 10.54] were not able to reduce their forecast error over the same horizons to the same extent. For this particular application the nonlinear auto-regressive model with exogenous input can be presented as a more accurate alternative to conventional regression modeling techniques, especially for short-term milk-yield predictions.
    • Rheological properties and structural features of coconut milk emulsions stabilized with maize kernels and starch

      Lu, Xu; Su, Han; Guo, Juanjuan; Tu, Jinjin; Lei, Yi; Zeng, Shaoxiao; Chen, Yingtong; Miao, Song; Zheng, Baodong; China-Ireland International Cooperation Centre for Food Material Science and Structure Design; et al. (Elsevier, 2019-05-16)
      In this study, maize kernels and starch with different amylose contents at the same concentration were added to coconut milk. The nonionic composite surfactants were used to prepare various types of coconut milk beverages with optimal stability, and their fluid properties were studied. The steady and dynamic rheological property tests show that the loss modulus (G″) of coconut milk is larger than the storage modulus (G′), which is suitable for the pseudoplastic fluid model and has a shear thinning effect. As the droplet size of the coconut milk fluid changed by the addition of maize kernels and starch, the color intensity, ζ-potential, interfacial tension and stability of the sample significantly improved. The addition of the maize kernels significantly reduced the size of the droplets (p < 0.05). The potential values of zeta (ζ) and the surface tension of the coconut milk increased. Based on the differential scanning calorimetry (DSC) measurement, the addition of maize kernels leads to an increase in the transition temperature, especially in samples with a high amylose content. The higher transition temperature can be attributed to the formation of some starches and lipids and the partial denaturation of proteins in coconut milk, but phase separation occurs. These results may be helpful for determining the properties of maize kernels in food-containing emulsions (such as sauces, condiments, and beverages) that achieve the goal of physical stability.
    • Optimising the acceptability of reduced-salt ham with flavourings using a mixture design

      Delgado-Pando, Gonzalo; Allen, Paul; Kerry, Joseph P.; O'Sullivan, Maurice; Hamill, Ruth M; Department of Agriculture, Food and the Marine; 11F 026 (Elsevier, 2019-05-13)
      The objective of this study was to optimise the acceptability of reduced-salt cooked ham containing a mixture of glycine and yeast extract as flavourings by using response surface methodology. Twelve different formulations were prepared with varying levels of salt and the two flavourings, according to a mixture design. The sensory properties were assessed along with the instrumental texture and colour. A multiple factor analysis showed that higher scores in tenderness, saltiness and juiciness were positively correlated, whereas instrumental hardness and chewiness were negatively correlated with acceptability. Response surface plots and optimisation software allowed the inference of two optimised formulations: HO1 with 1.3% salt and yeast extract content of 0.33%; and HO2 with 1.27% salt, 0.2% yeast extract and 0.16% glycine. A panel of 100 consumers found no significant differences in overall acceptability when both were compared to a control (1.63% salt). These results show it is possible to manufacture consumer accepted cooked ham with up to 20% salt reduction.
    • The application of process analytical technologies (PAT) to the dairy industry for real time product characterization - process viscometry

      O’Shea, Norah; O'Callaghan, Tom F.; Tobin, John; Dairy Processing Technology (DPTC) Centre; Enterprise Ireland; TC/2014/0016 (Elsevier, 2019-05-03)
      The ideal PAT tool is an inline instrument that can monitor and measure process parameters simultaneously in real time while operating in a highly automated environment. Instruments must be of sanitary design, operate robustly within the full process cycle (production and cleaning). Inline determination of the rheological properties of moving fluids (i.e. dairy concentrates) is one of the process parameters where PAT tools can be add real value in terms of optimising process control. Measurement of process viscosity is crucial in the monitoring and control of a variety of concentration processes in the dairy industry. Continuous monitoring of the rheological behaviour of the fluid can allow for optimisation of the process e.g. pumping (avoid pump blockage and failure), evaporation (limit fouling and maximise water removal) and spray drying (avoidance of nozzle fouling). This review concentrates on the state of the art developments being made in the area of process viscometry.
    • Recovery of Polyphenols from Brewer’s Spent Grains

      Birsan, Rares; Wilde, Peter; Waldron, Keith; Rai, Dilip K.; Teagasc Walsh Fellowship Programme; 2014027 (MDPI, 2019-09-07)
      The recovery of antioxidant polyphenols from light, dark and mix brewer’s spent grain (BSG) using conventional maceration, microwave and ultrasound assisted extraction was investigated. Total polyphenols were measured in the crude (60% acetone), liquor extracts (saponified with 0.75% NaOH) and in their acidified ethyl acetate (EtOAc) partitioned fractions both by spectrophotometry involving Folin–Ciocalteu reagent and liquid-chromatography-tandem mass spectrometry (LC-MS/MS) methods. Irrespective of the extraction methods used, saponification of BSG yielded higher polyphenols than in the crude extracts. The EtOAc fractionations yielded the highest total phenolic content (TPC) ranging from 3.01 ± 0.19 to 4.71 ± 0.28 mg gallic acid equivalent per g of BSG dry weight. The corresponding total polyphenols quantified by LC-MS/MS ranged from 549.9 ± 41.5 to 2741.1 ± 5.2 µg/g of BSG dry weight. Microwave and ultrasound with the parameters and equipment used did not improve the total polyphenol yield when compared to the conventional maceration method. Furthermore, the spectrophotometric quantification of the liquors overestimated the TPC, while the LC-MS/MS quantification gave a closer representation of the total polyphenols in all the extracts. The total polyphenols were in the following order in the EtOAc fractions: BSG light > BSG Mix > BSG dark, and thus suggested BSG light as a sustainable, low cost source of natural antioxidants that may be tapped for applications in food and phytopharmaceutical industries.
    • A Study of the Effectiveness of Risk Assessment and Extension Supports for Irish Farmers to Improve Farm Safety and Health Management

      McNamara, John G. (2014)
      The agricultural sector workforce in Ireland and Internationally has a poor occupational safety and health (OSH) record. Given this situation, identifying approaches to improve OSH adoption on farms are urgently required, yet limited research has been conducted on this topic. In Ireland, legislation introduced in 2005 permitted the development of a Code of Practice (COP) in association with a Risk Assessment Document (RAD) for specific sectors to assist owners of small-scale enterprises and the self-employed to manage OSH. Two state agencies, the Health and Safety Authority and Teagasc – Agriculture and Food Development Authority, formed an alliance to undertake a Prevention Initiative to develop the COP and RAD for the agriculture sector and to assist farmers to use these documents to manage farm OSH and to assess the utility of the approach adopted. The Prevention Initiative firstly developed the RAD on a pilot basis and assessed its value in assisting farmers with OSH management in association with provision of short halfday training and follow-up extension. This was followed by circulation of COP documents, including the RAD, to farmers nationally and making available half-day training based on the RAD and associated OSH extension. A mixed-method research approach was implemented to assess the RAD utility and effectiveness while triangulation of data from different sources was undertaken to maximise the knowledge gained. Questionnaires were used among farmer participants (n=1,206) and Teagasc staff (n=54), who facilitated the training, to gain opinions of the RAD and of the training provided. RAD’s were assembled (n=475) and assessed for their completion levels and nature of controls specified for action by farmers. Farm audits were undertaken (n=94) to assess implementation of farm OSH controls in association with RAD use. A nationally representative survey of farmers (n=891) was used to establish levels of COP and RAD usage and farm accident levels. Farmers reported having a positive attitude to farm OSH. They rated the RAD developed on a pilot basis as the most helpful to them in assisting with OSH management when compared with other legal documents developed in Ireland for this purpose. Farmers perceptions of the causes of serious accidents were found to be at variance with objective data and it was concluded that use of the RAD was an effective means of accurate communications. The COP and RAD documents were used to a limited extent among the farming population and it was concluded that greater utility of these documents requires further support through training. Participation in training on RAD completion in the project pilot phase was motivated by farmers’ desire to improve farm OSH and to gain assistance in completing the legally required documents. Among training approaches used, participants rated using accident victim testimonials and visual approaches to show OSH controls most useful while the provision of information on farmers’ health and level of discussion during training as least useful. Most participants were willing to engage in further OSH farm-based extension including participation in further training and attending farm demonstrations. Following RAD completion, most farmers (78%) planned to make OSH changes for which farm resources were mainly available, but just over half (55%) implemented the changes they planned and these were identified as having a prior record of OSH adoption. Farmers identified a limited number of controls in the RAD for action and those who attended training specified a higher level , while controls specified were mainly physical in nature such as machinery and farm facilities improvement. RAD facilitators were satisfied with the content and structure of farmer RAD training and the majority (80%) were also satisfied with the training they received to provide RAD farmer training while those dissatisfied mainly felt that the training provided was too short. Advisors who facilitated RAD training when compared to those not allocated this role, subsequently reported providing higher levels of OSH advice. Farmers’ completion of the RAD with or without training (half-day) was not associated with reduced farm accident levels. Farm accident level was associated with farms where the farmer and spouse had off farm work, which were comparatively larger in scale. Being a Teagasc client or having received agricultural education was not associated with reduced farm accident levels. Overall the study indicates that farmers’ knowledge is not the limiting factor to OSH implementation as use of the RAD and training did not lead to OSH change among prior non-adopters. The study recommends further assessment of extension approaches which can motivate OSH adoption such as use of farmer discussion groups which have been shown to improve farm management and technology adoption.
    • Distinct microbiome composition and metabolome exists across subgroups of elite Irish athletes

      O'Donovan, Ciara M.; Madigan, Sharon M.; Garcia-Perez, Isabel; Rankin, Alan; O'Sullivan, Orla; Cotter, Paul D.; Science Foundation Ireland; National Institute for Health Research; SFI/12/RC/2273; 13/SIRG/2160; et al. (2019-09-18)
      Objectives: The gut microbiome has begun to be characterised in athlete groups, albeit, to date, only across a subset of sports. This study aimed to determine if the gut microbiome and metabolome differed across sports classification groups (SCGs) among elite Irish athletes, many of whom were participating in the 2016 Summer Olympics. Methods: Faecal and urine samples were collected from 37 international level athletes. Faecal samples were prepared for shotgun metagenomic sequencing and faecal and urine samples underwent metabolomic profiling. Results: Differences were observed in the composition and functional capacity of the gut microbiome of athletes across SCGs. The microbiomes of athletes participating in sports with a high dynamic component were the most distinct compositionally (greater differences in proportions of species), while those of athletes participating in sports with high dynamic and static components were the most functionally distinct (greater differences in functional potential). Additionally, both microbial (faecal) and human (urine) derived metabolites were found to vary between SCGs. In particular cis-aconitate, succinic acid and lactate, in urine samples, and creatinine, in faeces, were found to be significantly different between groups. These differences were evident despite the absence of significant differences in diet, as determined using food frequency questionnaires, which were translated into nutrient intake values using FETA. Conclusions: Differences in the gut microbiome and metabolome between groups, in the absence of dietary changes, indicate a role for training load or type as a contributory factor. Further exploration of this hypothesis has the potential to benefit athletes, aspiring athletes and the general public.
    • Antioxidant, Antidiabetic, and Anticholinesterase Activities and Phytochemical Profile of Wedd.

      Faraone, Immacolata; Rai, Dilip K.; Russo, Daniela; Chiummiento, Lucia; Fernandez, Eloy; Choudhary, Alka; Milella, Luigi; Regione Basilicata; Fondazione Enrico Mattei DGR; Regional Project ALIMINTEGRA, GO NUTRIBAS; et al. (MDPI, 2019-08-03)
      Oxidative stress is involved in different diseases, such as diabetes and neurodegenerative diseases. The genus Azorella includes about 70 species of flowering plant species; most of them are commonly used as food and in particular as a tea infusion in the Andean region of South America in folk medicine to treat various chronic diseases. Azorella glabra Wedd. aerial parts were firstly analyzed for their in vitro antioxidant activity using different complementary assays. In particular, radical scavenging activity was tested against biological neutral radical DPPH; ferric reducing power and lipid peroxidation inhibitory capacity (FRAP and Beta-Carotene Bleaching tests) were also determined. The Relative Antioxidant Capacity Index (RACI) was used to compare data obtained by different assays. Then, the inhibitory ability of samples was investigated against α-amylase and α-glucosidase enzymes involved in diabetes and against acetylcholinesterase and butyrylcholinesterase enzymes considered as strategy for the treatment of Parkinson's or Alzheimer's diseases. Moreover, the phytochemical profile of the sample showing the highest RACI (1.35) and interesting enzymatic activities (IC50 of 163.54 ± 9.72 and 215.29 ± 17.10 μg/mL in α-glucosidase and acetylcholinesterase inhibition, respectively) was subjected to characterization and quantification of its phenolic composition using LC-MS/MS analysis. In fact, the ethyl acetate fraction derived from ethanol extract by liquid/liquid extraction showed 29 compounds, most of them are cinnamic acid derivatives, flavonoid derivatives, and a terpene. To the best of our knowledge, this is the first report about the evaluation of significant biological activities and phytochemical profile of A. glabra, an important source of health-promoting phytochemicals.
    • Nitrogen fertiliser interactions with urine deposit affect nitrous oxide emissions from grazed grasslands

      Maire, J.; Krol, Dom; Pasquier, D.; Cowan, N.; Skiba, U.; REes, R.M.; REay, D.; Lanigan, Gary; Richards, Karl J.; Teagasc Walsh Fellowship Programme; et al. (Elsevier, 2019-12-06)
      Cattle excreta deposited on grazed pastures are responsible for one fifth of the global anthropogenic nitrous oxide (N2O) emissions. One of the key nitrogen (N) sources is urine deposited from grazing animals, which contributes to very large N loadings within small areas. The main objective of this plot study was to establish whether the application of N fertiliser and urine deposit from dairy cows synergistically interacts and thereby increases N2O emissions, and how such interaction is influenced by the timing of application. The combined application of fertiliser (calcium ammonium nitrate) and urine significantly increased the cumulative N2O emissions as well as the N2O emission factor (EF) from 0.35 to 0.74 % in spring and from 0.26 to 0.52 % in summer. By contrast, EFs were lower when only fertiliser (0.31 % in spring, 0.07 % in summer) or urine was applied (0.33 % in spring, 0.28 % in summer). In autumn, N2O emissions were larger than in other seasons and the emissions from the combined application were not statistically different to those from either the separately applied urine or N fertiliser (EF ranging from 0.72 to 0.83, p-value < 0.05). The absence of significant synergistic effect could be explained by weather conditions, particularly rainfall during the three days prior to and after application in autumn. This study implies that the interactive effects of N fertilisation and urine deposit, as well as the timing of the application on N2O emission need to be taken into account in greenhouse gas emission inventories.
    • Impact of pulsed electric field pre-treatment on nutritional and polyphenolic contents and bioactivities of light and dark brewer's spent grains

      Kumari, Bibha; Tiwari, Brijesh; Walsh, Des; Griffin, Tomás; Islam, Nahidul; Lyng, James G.; Brunton, Nigel; Rai, Dilip K.; Department of Agriculture, Food and the Marine; European Union; et al. (Elsevier, 2019-04-30)
      Pulsed electric field (PEF) pre-treatment, at 2.8 kV/cm with 3000 pulses of 20 μs pulse-width, was applied on brewer's spent grains (BSG) followed by aqueous extraction at 55 °C, 220 rpm for 16 h. PEF pre-treatment showed significantly increased yields (p < 0.05) of carbohydrate, protein, starch and reducing sugar in extracts from dark BSG compared to untreated samples. Light BSG extracts had significantly higher (p < 0.05) levels of free d-glucose and total free amino acids (18.5–33.3 and 21–25 mg/g dry weight extract (Dwe)), compared to dark extracts (5 and 1.2 mg/g Dwe respectively). Dark BSG extracts showed significantly higher (p < 0.05) total phenolics (3.97–4.88 mg GAE/g Dwe) compared to light BSG extracts (0.83–1.40 mg GAE/g Dwe). Furthermore, PEF treated light BSG showed higher antimicrobial activity with minimum inhibition concentration (MIC) of 50 and 25 mg/mL against Salmonella typhimurium and Listeria monocytogenes, respectively compared to the untreated extracts (>50 mg/mL) with lowest MIC value of 1.56 mg/mL against Staphylococcus aureus. All the BSG extracts induced the release of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α) and chemokines (IL-8, MCP-1 and MIP-1α) confirming immunomodulatory activity.