T-Stor: Recent submissions
Now showing items 21-40 of 3591
-
Summer scour syndrome in weaned dairy calves: case seriesAbstract Background Summer scour syndrome (SSS) is a recently identified pathological condition affecting weaned dairy and dairy-beef calves during their first grazing season in Ireland. The syndrome is characterised by diarrhoea, weight loss, weakness, and can ultimately lead to death in some calves. Oral and oesophageal ulcerations are present in some cases. This study aimed to characterise a series of SSS cases in weaned dairy-bred calves on Irish commercial farms. Results Five farms with calves having unexplained diarrhoea at grass were referred by private veterinary practitioners (PVP) following preliminary testing to exclude coccidiosis and parasitic gastroenteritis. Farms were visited within 2 to 5 days following PVP’s referrals, or 2 days to 3 weeks relative to the onset of clinical signs. Farm management data, grass and concentrate samples, and biological samples from 46 calves (8 to 10 calves/farm) displaying clinical signs were collected. Two farms were subsequently found positive for coccidiosis and/or had chronic pneumonia problems after a thorough herd investigation and were designated as non-case farms (NCF). The remaining three farms were deemed typical SSS outbreaks (case farms; CF). Mean rumen fluid pH per farm ranged from 6.67 to 7.09 on CF, and 6.43–6.88 on NCF. Mean rumen fluid ammonia concentrations ranged from 17.6 to 29.6 mg/L and 17.2–45.0 mg/L on CF and NCF, respectively. Corresponding blood ammonia concentrations ranged from 129 to 223 µmol/L and 22–25 µmol/L. Mean blood copper and molybdenum concentrations were within normal range on all farms. Grass crude protein concentrations on the paddocks where the calves had grazed, and were currently grazing on the day of visit ranged from 137 to 148 g/kg DM and 106–177 g/kg DM, respectively on CF, and 160–200 g/kg DM and 151–186 g/kg DM, respectively on NCF. On CF, inorganic nitrogen fertiliser was applied 1 to 3 weeks pre-grazing, whereas on the two NCF, inorganic nitrogen fertiliser was applied 2 to 3 weeks pre-grazing on one farm and no fertiliser was applied on the other. Conclusion These findings suggest that copper or molybdenum toxicity, and ruminal acidosis are not the primary causes of SSS. High blood ammonia concentrations and the timing and level of inorganic nitrogen fertiliser application to paddocks pre-grazing, warrant further investigation.
-
Description of patterns of ear and tail lesions during the grower-finisher period in a commercial pig farmBackground Ear and tail lesions are prevalent indicators of impaired welfare observed in pig production with different multifactorial causes. Understanding the progression of ear and tail lesions over time is important to implement preventative strategies on commercial pig farms. Therefore, this case study aimed to provide a detailed account of patterns of ear and tail lesions in pigs on a single commercial farm during the grower-finisher period. Case presentation A total of 1,676 12-week old pigs (n = 773 females and n = 903 males, all tail docked) were followed from arrival to the grower facilities until transferred to the finisher stage on a commercial pig farm in Ireland. Pigs were individually weighed and inspected for the severity of fresh ear and tail lesions (score 0–4) on transfer to the first grower (24.9 ± 5.33 kg, 12 weeks of age, n = 1,676 pigs), second grower (33.3 ± 7.04 kg, 14 weeks of age, n = 1,641 pigs), and finisher stage (60.2 ± 7.74 kg, 18 weeks of age, n = 1,626 pigs). Due to the low number of pigs with high scores, ear lesions were classified as no (score 0), mild (score 1), moderate (score 2) and severe (score ≥ 3) and tail lesions were classified as no (score 0), mild (score 1), and moderate-to-severe (score ≥ 2). Ear lesions were more prevalent than tail lesions at each inspection. There were approx. 19% of pigs with ear lesions at all three inspections but no pigs presented with tail lesions at all three inspections. When considering the specific severity categories, we observed 32 different ear lesion score combinations and 15 different tail lesion score combinations across the three inspections. Conclusion The high number of observed patterns of ear and tail lesions suggest large individual variability in lesion progression. Ear lesions were more of an issue than tail lesions and little is known about this health and welfare problem indicating that further research into causes and management strategies is needed.
-
Development of an animal health testing tool to reduce antimicrobial use on farms: perceptions, implications, and needs of Irish dairy farmers and farm veterinariansAbstract Background The threat of antimicrobial resistance is triggering the need for behavioural change towards antimicrobial use on Irish farms. Newly introduced veterinary medicine regulations are mandating the restricted and more prudent use of antimicrobials in the animal health sector. The need to reduce antimicrobials has placed a greater emphasis on the importance of animal health testing, however, issues with current testing practices are affecting diagnosis and subsequent drug usage. There is potential for digital technologies to address these issues and reduce antimicrobial use on farms, however, for these tools to be successful, they would need to be developed in collaboration with future end users. Results Using qualitative approaches (focus groups), this study engages with dairy farmers and farm veterinary practitioners to detail current challenges with animal health diagnosis and to explore the initial development of a rapid, on-farm animal health testing tool to address these challenges. Issues with timing and testing, the role of knowledge and experience, and veterinarian availability all affect the ability of farmers and veterinarians to diagnose animal health issues on farm. These issues are having negative implications including the increased and unnecessary use of antimicrobials. An on-farm testing tool would help mitigate these effects by allowing veterinarians to achieve rapid diagnosis, facilitating the timely and targeted treatment of animal illnesses, helping to reduce overall antimicrobial use on farms. However, engagement with end users has highlighted that if a tool like this is not developed correctly, it could have unintended negative consequences such as misdiagnosis, increased antimicrobial use, challenges to farmer-veterinarian relationships, and data misuse. This study outlines initial end user needs and requirements for a testing tool but suggests that in order to successfully design and develop this tool, co-design approaches such as Design Thinking should be applied; to mitigate future negative impacts, and to ensure a testing tool like this is designed specifically to address Irish dairy farmers and farm veterinarians’ values and needs, ensuring responsible and successful uptake and use. Conclusions Digital tools can be effective in reducing antimicrobial use on farms, however, to be successful, these tools should be designed in a user centred way.
-
A Global Review of Monitoring, Modeling, and Analyses of Water Demand in Dairy FarmingThe production of milk must be balanced with the sustainable consumption of water resources to ensure the future sustainability of the global dairy industry. Thus, this review article aimed to collate and summarize the literature in the dairy water-usage domain. While green water use (e.g., rainfall) was found to be largest category of water use on both stall and pasture-based dairy farms, on-farm blue water (i.e., freshwater) may be much more susceptible to local water shortages due to the nature of its localized supply through rivers, lakes, or groundwater aquifers. Research related to freshwater use on dairy farms has focused on monitoring, modeling, and analyzing the parlor water use and free water intake of dairy cows. Parlor water use depends upon factors related to milk precooling, farm size, milking systems, farming systems, and washing practices. Dry matter intake is a prominent variable in explaining free water intake variability; however, due to the unavailability of accurate data, some studies have reported moving away from dry matter intake at the expense of prediction accuracy. Machine-learning algorithms have been shown to improve dairy water-prediction accuracy by 23%, which may allow for coarse model inputs without reducing accuracy. Accurate models of on-farm water use allow for an increased number of dairy farms to be used in water footprinting studies, as the need for physical metering equipment is mitigated.
-
Synthetic Sequencing Standards: A Guide to Database Choice for Rumen Microbiota Amplicon Sequencing AnalysisOur understanding of complex microbial communities, such as those residing in the rumen, has drastically advanced through the use of high throughput sequencing (HTS) technologies. Indeed, with the use of barcoded amplicon sequencing, it is now cost effective and computationally feasible to identify individual rumen microbial genera associated with ruminant livestock nutrition, genetics, performance and greenhouse gas production. However, across all disciplines of microbial ecology, there is currently little reporting of the use of internal controls for validating HTS results. Furthermore, there is little consensus of the most appropriate reference database for analyzing rumen microbiota amplicon sequencing data. Therefore, in this study, a synthetic rumen-specific sequencing standard was used to assess the effects of database choice on results obtained from rumen microbial amplicon sequencing. Four DADA2 reference training sets (RDP, SILVA, GTDB, and RefSeq + RDP) were compared to assess their ability to correctly classify sequences included in the rumen-specific sequencing standard. In addition, two thresholds of phylogenetic bootstrapping, 50 and 80, were applied to investigate the effect of increasing stringency. Sequence classification differences were apparent amongst the databases. For example the classification of Clostridium differed between all databases, thus highlighting the need for a consistent approach to nomenclature amongst different reference databases. It is hoped the effect of database on taxonomic classification observed in this study, will encourage research groups across various microbial disciplines to develop and routinely use their own microbiome-specific reference standard to validate analysis pipelines and database choice.
-
An investigation into the grazing efficiency of perennial ryegrass varietiesThe objective of this study was to compare the grazing efficiency of 30 perennial ryegrass varieties, differing in ploidy and heading date. Plots were grazed by lactating dairy cows and managed under a rotational grazing system with 19 grazing events occurring over two years. Pre-grazing and post-grazing compressed sward heights were measured with a rising plate meter. A mixed model was used to predict the post-grazing sward height of each variety based on year, grazing event, block and pre-grazing sward height. Residual grazed height (RGH) was derived as the difference between the actual and predicted post-grazing sward height and was used as the measure of grazing efficiency. Negative RGH values indicated that the actual herbage removed was greater than that predicted and so indicated a superior grazing efficiency. Varieties differed in their level of grazing efficiency (p < .001), with RGH values ranging from −0.38 to +0.34 cm. Tetraploid varieties exhibited significantly greater grazing efficiency performance than diploids (p < .001), with average RGH values of −0.13 and +0.13 cm respectively. A significant difference in grazing efficiency was found among recommended perennial ryegrass varieties that are not being recorded by mechanically harvested simulated grazing protocols. A variety reappraisal that included grazing efficiency could identify varieties capable of improving on-farm livestock productivity from grass.
-
An Investigation of the Effect of Catecholamines and Glucocorticoids on the Growth and Pathogenicity of Campylobacter jejuniCampylobacter spp. are major causes of foodborne illness globally, and are mostly transmitted through the consumption and handling of poultry. Campylobacter infections have widely variable outcomes, ranging from mild enteritis to severe illness, which are attributed to host interactions and the virulence of the infecting strain. In this study, in order to investigate the effect of host stress on the growth and pathogenicity of C. jejuni, three strains associated with human infection and two strains from broilers were subject to growth, motility, adhesion and invasion assays, in response to exposure to catecholamines; epinephrine, norepinephrine and the glucocorticoid neuroendocrine hormones corticosterone, cortisol and cortisone which are associated with stress in humans and broilers. Catecholamines resulted in significantly increased growth, adhesion and invasion of Caco-2 cells. Corticosterone promoted growth in one of five strains, and cortisone resulted in a significant increase in motility in two out of five strains, while no significant differences were observed with the addition of cortisol. It was concluded that stress-associated hormones, especially catecholamines, may promote growth and virulence in Campylobacter.
-
Skin Temperature of Slaughter Pigs With Tail LesionsThe aim of this study was to assess the effect of tail lesion severity on skin temperature of slaughter pigs measured at the base of the tail and the ear by infrared thermography camera and to evaluate the association between the temperature measurements. Pigs were randomly selected in the lairage, containing ~200 pigs/pen. Tail lesions were scored according to severity, using a 0-4 scale. Tail lesion scores 0 and 1 were summed as it was difficult to distinguish healed lesions from mild lesions due to animal dirtiness. In total, 269 study pigs were imaged at the two locations. The effect of tail lesion score and sex of the pig on the highest temperature of the infrared image areas were analyzed using linear mixed models. Association between the tail base and ear base temperatures was evaluated using Pearson correlation. Skin temperature measured at the base of the tail was significantly lower for tails scored 0–1 than for all other tail lesion scores (P < 0.05). Pigs with tail lesion scored 2 had significantly lower skin temperatures at the base of the tail than pigs with tail lesion scored 3 or 4 (P < 0.05) while there was no difference in skin temperature at the base of the tail between pigs with tail lesion scored 3 and 4 (P > 0.05). Skin temperature measured at the ear base was significantly lower for pigs with tail lesion scored 0–1 than pigs of all other tail lesion scores (P < 0.05) with no difference between the other scores (P > 0.05). Furthermore, there was an association between the two measurements (r = 0.50; P < 0.001). The findings suggest that even pigs with moderate tail lesions (score 2) may have general inflammation and infection, evidenced by the elevated systemic temperature compared to pigs with none or mild tail lesion (score 0–1).
-
Whole-genome epidemiology links phage-mediated acquisition of a virulence gene to the clonal expansion of a pandemic Salmonella enterica serovar Typhimurium cloneEpidemic and pandemic clones of bacterial pathogens with distinct characteristics continually emerge, replacing those previously dominant through mechanisms that remain poorly characterized. Here, whole-genome-sequencing-powered epidemiology linked horizontal transfer of a virulence gene, sopE, to the emergence and clonal expansion of a new epidemic Salmonella enterica serovar Typhimurium (S. Typhimurium) clone. The sopE gene is sporadically distributed within the genus Salmonella and rare in S . enterica Typhimurium lineages, but was acquired multiple times during clonal expansion of the currently dominant pandemic monophasic S. Typhimurium sequence type (ST) 34 clone. Ancestral state reconstruction and time-scaled phylogenetic analysis indicated that sopE was not present in the common ancestor of the epidemic clade, but later acquisition resulted in increased clonal expansion of sopE-containing clones that was temporally associated with emergence of the epidemic, consistent with increased fitness. The sopE gene was mainly associated with a temperate bacteriophage mTmV, but recombination with other bacteriophage and apparent horizontal gene transfer of the sopE gene cassette resulted in distribution among at least four mobile genetic elements within the monophasic S . enterica Typhimurium ST34 epidemic clade. The mTmV prophage lysogenic transfer to other S. enterica serovars in vitro was limited, but included the common pig-associated S . enterica Derby (S. Derby). This may explain mTmV in S. Derby co-circulating on farms with monophasic S. Typhimurium ST34, highlighting the potential for further transfer of the sopE virulence gene in nature. We conclude that whole-genome epidemiology pinpoints potential drivers of evolutionary and epidemiological dynamics during pathogen emergence, and identifies targets for subsequent research in epidemiology and bacterial pathogenesis.
-
Collective Production and Marketing of Quality Potato Seed: Experiences from Two Cooperatives in Chencha, EthiopiaIn spite of many initiatives to set up community or farmer-group-based seed production, there is little empirical evidence about the group functioning in producing and marketing quality seed. This article therefore aims to contribute to better understanding of the process and practice of seed potato cooperatives’ formation and operation in Chencha, Ethiopia. Our study specifically focused on why and how farmer groups organize, produce and market quality seed potato. We collected primary data from two seed potato cooperatives in three phases through interviews, focus group discussions, and field assessment and store inventories on bacterial wilt incidence. We found that the support to the establishing of the two seed potato cooperatives focused more on improving the members’ seed potato production capacity and less on building good governance in the seed chain. The experiences showed the tensions between prescriptive rules, collective action and individual interests which made it very hard to maintain quality seed standards and friendship at the same time. In general, the root of having weak seed cooperatives may not be the lack of intent towards building durable farmer groups. Rather, development practitioners did not take the set-up of strong farmer groups as an evolving process, which continually engages in diagnosis and responds to the emerging social as well as material challenges. The set-up of farmer-group-based seed production, therefore, needs to shift from ‘standard production models’ to an evolving model: an open and flexible model guided by trials, challenges and existing socio-technical and institutional realities.
-
Replacing Barley and Soybean Meal With By-products, in a Pasture Based Diet, Alters Daily Methane Output and the Rumen Microbial Community in vitro Using the Rumen Simulation Technique (RUSITEC)Plant based by-products (BP) produced from food and bioethanol industries are human inedible, but can be recycled into the global food chain by ruminant livestock. However, limited data is available on the methanogenesis potential associated with supplementing a solely BP formulated concentrate to a pastoral based diet. Therefore the objective of this in vitro study was to investigate the effects of BP inclusion rate (in a formulated concentrate) to a pasture based diet on dietary digestibility, rumen fermentation patterns, methane production and the prokaryotic microbial community composition. Diets consisted of perennial ryegrass and one of two supplementary concentrates, formulated to be isonitrogenous (16% CP) and isoenergetic (12.0 MJ/ME/kg), containing either 35% BP, barley and soybean meal (BP35) or 95% BP (BP95) offered on a 50:50 basis, however, starch, NDF and fat content varied. The BPs, included in equal proportions on a DM basis, were soyhulls, palm kernel expeller and maize dried distillers grains. The BP35 diet had greater (P < 0.05) digestibility of the chemical constituents DM, OM, CP, NDF, ADF. Greater total VFA production was seen in the BP35 diet (P < 0.05). Daily methane production (mmol/day; +22.7%) and methane output per unit of total organic matter digested (MPOMD; +20.8%) were greatest in the BP35 diet (P < 0.01). Dietary treatment influenced microbial composition (PERMANOVA; P = 0.023) with a greater relative abundance of Firmicutes (adj P < 0.01) observed in the BP35. The Firmicutes:Bacteroidetes ratio was significantly reduced in the BP95 diet (P < 0.01). The relative proportions of Proteobacteria (adj P < 0.01), Succinivibrionaceae (adj P < 0.03) and Succinivibrio (adj P = 0.053) increased in the BP95 diet. The abundance of Proteobacteria was found to be negatively associated with daily methane production (rs, −0.71; P < 0.01) and MPOMD (rs, −0.65; P < 0.01). Within Proteobacteria, the relationship of methane production was maintained with the mean abundance of Succinivibrio (rs, −0.69; P < 0.01). The abundance of the Firmicutes phyla was found to be positively correlated with both daily methane production (rs, 0.79; P < 0.001) and MPOMD (rs, 0.75; P < 0.01). Based on in vitro rumen simulation data, supplementation of an exclusively BP formulated concentrate was shown to reduce daily methane output by promoting a favorable alteration to the rumen prokaryotic community.
-
Effects of a polysaccharide-rich extract derived from Irish-sourced Laminaria digitata on the composition and metabolic activity of the human gut microbiota using an in vitro colonic modelBackground Brown seaweeds are known to be a rich source of fiber with the presence of several non-digestible polysaccharides including laminarin, fucoidan and alginate. These individual polysaccharides have previously been shown to favorably alter the gut microbiota composition and activity albeit the effect of the collective brown seaweed fiber component on the microbiota remains to be determined. Methods This study investigated the effect of a crude polysaccharide-rich extract obtained from Laminaria digitata (CE) and a depolymerized CE extract (DE) on the gut microbiota composition and metabolism using an in vitro fecal batch culture model though metagenomic compositional analysis using 16S rRNA FLX amplicon pyrosequencing and short-chain fatty acid (SCFA) analysis using GC-FID. Results Selective culture analysis showed no significant changes in cultured lactobacilli or bifidobacteria between the CE or DE and the cellulose-negative control at any time point measured (0, 5, 10, 24, 36, 48 h). Following metagenomic analysis, the CE and DE significantly altered the relative abundance of several families including Lachnospiraceae and genera including Streptococcus, Ruminococcus and Parabacteroides of human fecal bacterial populations in comparison to cellulose after 24 h. The concentrations of acetic acid, propionic acid, butyric acid and total SCFA were significantly higher for both the CE and DE compared to cellulose after 10, 24, 36 and 48 h fermentation (p < 0.05). Furthermore, the acetate:propionate ratio was significantly reduced (p < 0.05) for both CD and DE following 24, 36 and 48 h fermentation. Conclusion The microbiota-associated metabolic and compositional changes noted provide initial indication of putative beneficial health benefits of L. digitata in vitro; however, research is needed to clarify if L. digitata-derived fiber can favorably alter the gut microbiota and confer health benefits in vivo.
-
Isolation and Characterization of Listeria monocytogenes Phage vB_LmoH_P61, a Phage With Biocontrol Potential on Different Food MatricesThe high mortality rate associated with Listeria monocytogenes as well as its ability to adapt to the harsh conditions employed in food processing have ensured that this pathogen has become a significant concern in the ready-to-eat food industry. Lytic bacteriophages are viruses that hijack the metabolic mechanisms of their bacterial host as a means to grow and replicate, subsequently leading to host cell death due to lysis. This study reports the biological and genomic characterization of L. monocytogenes phage vB_LmoH_P61 (P61) and its potential application for the reduction of L. monocytogenes in artificially contaminated foods. Phage P61 is a virulent bacteriophage belonging to the family Herelleviridae and has a genome size of 136,485bp. The lytic spectrum of phage P61 was investigated and it was shown to infect serotypes 1/2a, 1/2b, 1/2c, 4b, 4e, and 6a. Treatment of artificially contaminated milk stored at 8 and 12°C with phage P61 resulted in a significant reduction in L. monocytogenes numbers over the product shelf life. Similarly, phage P61 reduced L. monocytogenes numbers on artificially contaminated baby spinach stored at 8, 12, and 25°C. The research findings indicate that biocontrol of L. monocytogenes with phage P61 may offer a safe and environmentally friendly approach for the reduction of L. monocytogenes numbers in certain ready-to-eat foods.
-
Future of Probiotics and Prebiotics and the Implications for Early Career ResearchersThe opportunities in the fields of probiotics and prebiotics to a great degree stem from what we can learn about how they influence the microbiota and interact with the host. We discuss recent insights, cutting-edge technologies and controversial results from the perspective of early career researchers innovating in these areas. This perspective emerged from the 2019 meeting of the International Scientific Association for Probiotics and Prebiotics - Student and Fellows Association (ISAPP-SFA). Probiotic and prebiotic research is being driven by genetic characterization and modification of strains, state-of-the-art in vitro, in vivo, and in silico techniques designed to uncover the effects of probiotics and prebiotics on their targets, and metabolomic tools to identify key molecules that mediate benefits on the host. These research tools offer unprecedented insights into the functionality of probiotics and prebiotics in the host ecosystem. Young scientists need to acquire these diverse toolsets, or form inter-connected teams to perform comprehensive experiments and systematic analysis of data. This will be critical to identify microbial structure and co-dependencies at body sites and determine how administered probiotic strains and prebiotic substances influence the host. This and other strategies proposed in this review will pave the way for translating the health benefits observed during research into real-life outcomes. Probiotic strains and prebiotic products can contribute greatly to the amelioration of global issues threatening society. The intent of this article is to provide an early career researcher’s perspective on where the biggest opportunities lie to advance science and impact human health.
-
Effect of suckler cow breed type and parity on the development of the cow-calf bond post-partum and calf passive immunityAbstract Background Development of the cow-calf bond post-partum and passive immunity of calves from spring-calving beef × beef (B×B) and beef × dairy (B×D) cow genotypes was determined using primiparous and multiparous (Experiment 1), and primiparous and second-parity (Experiment 2) animals. In Experiment 1, calves either suckled colostrum naturally (‘natural-suckling’) (n = 126), or were fed colostrum, using an oesophageal-tube (‘artificially-fed’) (n = 26), from their dam within 1-h post-partum. In Experiment 2, all calves (n = 60) were artificially-fed colostrum from their dam. Prior to colostrum suckling/feeding, colostrum was sampled for IgG analysis. The cow-calf bond was assessed using CCTV recordings during the first 4-h post-partum. Calves were blood sampled at 48-h post-partum to determine IgG and total protein (TP) concentrations, and zinc sulphate turbidity (ZST) units. Results There was no difference (P > 0.05) in cow licking behaviours and calf standing and suckling behaviours between the genotypes, except in Experiment 2 where B×D calves had more attempts to suckle before suckling occurred (P ≤ 0.05) compared to B×B calves. In Experiment 1, multiparous cows licked their calves sooner (P ≤ 0.05) and for longer (P < 0.01), and their calves had fewer attempts to stand (P < 0.001), stood for longer (P = 0.05), and had fewer attempts to suckle before suckling occurred (P < 0.001) than primiparous cows; there was no parity effect on cow-calf behaviour in Experiment 2. Colostrum IgG concentrations and measures of calf passive immunity did not differ (P > 0.05) between the genotypes in either Experiment. In Experiment 1, colostrum IgG concentrations were greater (P ≤ 0.05) in multiparous compared to primiparous cows and their calves had superior (P ≤ 0.05) passive immunity; no effect of parity was found in Experiment 2. Passive immunity did not differ (P > 0.05) between suckled and artificially-fed calves in Experiment 1. Conclusions Cow genotype had little effect on cow-calf behaviours, but under ‘natural-suckling’ conditions primiparous cows expressed maternal inexperience and their calves were less vigorous than multiparous cows. Colostrum IgG concentration and calf passive immunity measures were unaffected by genotype, but under ‘natural-suckling’ conditions calves from primiparous cows had lower passive immunity.
-
Relationships between pig farm management and facilities and lung lesions' scores and between lung lesions scores and carcass characteristicsAbstract Background The objective of this study was to examine the inter-relationships between pig farm management and facilities (as assessed by questionnaire) and post-mortem lung lesion (lung score assesment), which are the result of respiratory infections. The relationships between carcass characteristics and post-mortem lung lesion scores were also investigated. Results Questionnaire responses were collected from 22 self-selecting pig farmers about their farm facilities/management and health condition of the respiratory system of pigs, including the occurrence of clinical respiratory signs, results of laboratory testing for respiratory pathogens, and the use of respiratory vaccines. When fatteners were sent to the abattoir, their carcasses (n = 1,976) were examined for evidence of respiratory disease by lung lesion (pleuritis pneumonia-like (PP-like) and enzootic pneumonia-like (EP-like) lesions) scoring and the Actinobacillus pleuropneumoniae Index (APPI) was calculated. Carcass characteristics were recorded and, retrospectively, the prevalence of cachectic pigs was calculated. Using these variables, the relationships between farm facilities/management and lung lesions scores and the relationships between the latter and carcass characteristics and cachexia were explored. The key findings relating farm facilities and management to lung lesions were: slatted floors were associated with significantly higher EP-like lesions scores than litter bedding in weaners, single-stage fattening in the same building was associated with significantly higher EP-like lesions scores than two-stage fattening, but herd size, stocking density, use of all-in/all-out (AIAO) rule, technological break duration and variation in daily temperature did not affect lung lesions scores. The key findings relating lung lesion scores to carcass characteristics were: a significant, negative correlation between EP-like scores and carcass weight but not with other carcass characteristics, a significant positive correlation between PP-like scores and carcass meat content and prevalence of cachectic carcasses and a significant positive correlation between lung APPI and prevalence of cachectic carcasses. Conclusions It can be concluded that both farm facilities and management affect lung lesions scores and that the latter affect carcass characteristics. Lung lesion scoring is an inexpensive technique suitable for rapid monitoring of large numbers of carcasses that can be performed after animal slaughter. It provides useful information to inform producers about possible deficits in farm facilities or management and is a predictor of economic loss due to poorer quality carcasses.
-
First reported case in an Irish flock of MCF- like systemic necrotizing vasculitis in sheep associated with ovine herpesvirus 2Abstract Background Ovine gammaherpesvirus 2 (OvHV-2) is the causative agent of sheep associated malignant catarrhal fever (MCF). As sheep are the adapted host for OvHV-2, it is generally presumed that infection is not associated with disease in this species. However, a recent case review combined in-situ hybridisation, PCR and histopathology and correlated the viral distribution with systemic necrotizing vasculitis and concluded OvHV-2 was the likely agent responsible for sporadic, MCF-like vascular disease in sheep. Case presentation Using similar methods this case study reports on the findings of the first reported cases in an Irish Flock of MCF- like systemic necrotizing vasculitis in sheep associated with OvHV-2. Sheep A, a 16-month-old Texel-cross hogget displayed signs of ill- thrift, Sheep B, a nine-month-old Belclare-cross lamb, was found dead having displayed no obvious symptoms. Both cases occurred on the same farm, however the animals were not related. Lymphohistiocytic vasculitis of various tissues was the predominant histopathological finding in both animals. Conclusion By combining histopathology, PCR and in-situ hybridisation results, MCF- like systemic necrotizing vasculitis associated with OvHV-2 has been diagnosed for the first time in an Irish flock.
-
The detailed analysis of the microbiome and resistome of artisanal blue-veined cheeses provides evidence on sources and patterns of succession linked with quality and safety traitsAbstract Background Artisanal cheeses usually contain a highly diverse microbial community which can significantly impact their quality and safety. Here, we describe a detailed longitudinal study assessing the impact of ripening in three natural caves on the microbiome and resistome succession across three different producers of Cabrales blue-veined cheese. Results Both the producer and cave in which cheeses were ripened significantly influenced the cheese microbiome. Lactococcus and the former Lactobacillus genus, among other taxa, showed high abundance in cheeses at initial stages of ripening, either coming from the raw material, starter culture used, and/or the environment of processing plants. Along cheese ripening in caves, these taxa were displaced by other bacteria, such as Tetragenococcus, Corynebacterium, Brevibacterium, Yaniella, and Staphylococcus, predominantly originating from cave environments (mainly food contact surfaces), as demonstrated by source-tracking analysis, strain analysis at read level, and the characterization of 613 metagenome-assembled genomes. The high abundance of Tetragenococcus koreensis and Tetragenococcus halophilus detected in cheese has not been found previously in cheese metagenomes. Furthermore, Tetragenococcus showed a high level of horizontal gene transfer with other members of the cheese microbiome, mainly with Lactococcus and Staphylococcus, involving genes related to carbohydrate metabolism functions. The resistome analysis revealed that raw milk and the associated processing environments are a rich reservoir of antimicrobial resistance determinants, mainly associated with resistance to aminoglycosides, tetracyclines, and β-lactam antibiotics and harbored by aerobic gram-negative bacteria of high relevance from a safety point of view, such as Escherichia coli, Salmonella enterica, Acinetobacter, and Klebsiella pneumoniae, and that the displacement of most raw milk-associated taxa by cave-associated taxa during ripening gave rise to a significant decrease in the load of ARGs and, therefore, to a safer end product. Conclusion Overall, the cave environments represented an important source of non-starter microorganisms which may play a relevant role in the quality and safety of the end products. Among them, we have identified novel taxa and taxa not previously regarded as being dominant components of the cheese microbiome (Tetragenococcus spp.), providing very valuable information for the authentication of this protected designation of origin artisanal cheese. Video Abstract
-
Effects of removing in-feed antibiotics and zinc oxide on the taxonomy and functionality of the microbiota in post weaning pigsAbstract Background Post weaning diarrhoea (PWD) causes piglet morbidity and mortality at weaning and is a major driver for antimicrobial use worldwide. New regulations in the EU limit the use of in-feed antibiotics (Ab) and therapeutic zinc oxide (ZnO) to prevent PWD. New approaches to control PWD are needed, and understanding the role of the microbiota in this context is key. In this study, shotgun metagenome sequencing was used to describe the taxonomic and functional evolution of the faecal microbiota of the piglet during the first two weeks post weaning within three experimental groups, Ab, ZnO and no medication, on commercial farms using antimicrobials regularly in the post weaning period. Results Diversity was affected by day post weaning (dpw), treatment used and diarrhoea but not by the farm. Microbiota composition evolved towards the dominance of groups of species such as Prevotella spp. at day 14dpw. ZnO inhibited E. coli overgrowth, promoted higher abundance of the family Bacteroidaceae and decreased Megasphaera spp. Animals treated with Ab exhibited inconsistent taxonomic changes across time points, with an overall increase of Limosilactobacillus reuteri and Megasphaera elsdenii. Samples from non-medicated pigs showed virulence-related functions at 7dpw, and specific ETEC-related virulence factors were detected in all samples presenting diarrhoea. Differential microbiota functions of pigs treated with ZnO were related to sulphur and DNA metabolism, as well as mechanisms of antimicrobial and heavy metal resistance, whereas Ab treated animals exhibited functions related to antimicrobial resistance and virulence. Conclusion Ab and particularly ZnO maintained a stable microbiota composition and functionality during the two weeks post weaning, by limiting E. coli overgrowth, and ultimately preventing microbiota dysbiosis. Future approaches to support piglet health should be able to reproduce this stable gut microbiota transition during the post weaning period, in order to maintain optimal gut physiological and productive conditions.
-
An in-depth evaluation of metagenomic classifiers for soil microbiomesAbstract Background Recent endeavours in metagenomics, exemplified by projects such as the human microbiome project and TARA Oceans, have illuminated the complexities of microbial biomes. A robust bioinformatic pipeline and meticulous evaluation of their methodology have contributed to the success of these projects. The soil environment, however, with its unique challenges, requires a specialized methodological exploration to maximize microbial insights. A notable limitation in soil microbiome studies is the dearth of soil-specific reference databases available to classifiers that emulate the complexity of soil communities. There is also a lack of in-vitro mock communities derived from soil strains that can be assessed for taxonomic classification accuracy. Results In this study, we generated a custom in-silico mock community containing microbial genomes commonly observed in the soil microbiome. Using this mock community, we simulated shotgun sequencing data to evaluate the performance of three leading metagenomic classifiers: Kraken2 (supplemented with Bracken, using a custom database derived from GTDB-TK genomes along with its own default database), Kaiju, and MetaPhlAn, utilizing their respective default databases for a robust analysis. Our results highlight the importance of optimizing taxonomic classification parameters, database selection, as well as analysing trimmed reads and contigs. Our study showed that classifiers tailored to the specific taxa present in our samples led to fewer errors compared to broader databases including microbial eukaryotes, protozoa, or human genomes, highlighting the effectiveness of targeted taxonomic classification. Notably, an optimal classifier performance was achieved when applying a relative abundance threshold of 0.001% or 0.005%. The Kraken2 supplemented with bracken, with a custom database demonstrated superior precision, sensitivity, F1 score, and overall sequence classification. Using a custom database, this classifier classified 99% of in-silico reads and 58% of real-world soil shotgun reads, with the latter identifying previously overlooked phyla using a custom database. Conclusion This study underscores the potential advantages of in-silico methodological optimization in metagenomic analyses, especially when deciphering the complexities of soil microbiomes. We demonstrate that the choice of classifier and database significantly impacts microbial taxonomic profiling. Our findings suggest that employing Kraken2 with Bracken, coupled with a custom database of GTDB-TK genomes and fungal genomes at a relative abundance threshold of 0.001% provides optimal accuracy in soil shotgun metagenome analysis.