Now showing items 21-40 of 1430

    • Illumina MiSeq Phylogenetic Amplicon Sequencing Shows a Large Reduction of an Uncharacterised Succinivibrionaceae and an Increase of the Methanobrevibacter gottschalkii Clade in Feed Restricted Cattle

      McCabe, Matthew Sean; Cormican, Paul; Keogh, Kate; O'Connor, Aaron; O'Hara, Eoin; Palladino, Rafael Alejandro; Kenny, David A.; Waters, Sinead M. (PLOS, 2015-07-30)
      Periodic feed restriction is used in cattle production to reduce feed costs. When normal feed levels are resumed, cattle catch up to a normal weight by an acceleration of normal growth rate, known as compensatory growth, which is not yet fully understood. Illumina Miseq Phylogenetic marker amplicon sequencing of DNA extracted from rumen contents of 55 bulls showed that restriction of feed (70% concentrate, 30% grass silage) for 125 days, to levels that caused a 60% reduction of growth rate, resulted in a large increase of relative abundance of Methanobrevibacter gottschalkii clade (designated as OTU-M7), and a large reduction of an uncharacterised Succinivibrionaceae species (designated as OTU-S3004). There was a strong negative Spearman correlation (ρ = -0.72, P = <1x10-20) between relative abundances of OTU-3004 and OTU-M7 in the liquid rumen fraction. There was also a significant increase in acetate:propionate ratio (A:P) in feed restricted animals that showed a negative Spearman correlation (ρ = -0.69, P = <1x10-20) with the relative abundance of OTU-S3004 in the rumen liquid fraction but not the solid fraction, and a strong positive Spearman correlation with OTU-M7 in the rumen liquid (ρ = 0.74, P = <1x10-20) and solid (ρ = 0.69, P = <1x10-20) fractions. Reduced A:P ratios in the rumen are associated with increased feed efficiency and reduced production of methane which has a global warming potential (GWP 100 years) of 28. Succinivibrionaceae growth in the rumen was previously suggested to reduce methane emissions as some members of this family utilise hydrogen, which is also utilised by methanogens for methanogenesis, to generate succinate which is converted to propionate. Relative abundance of OTU-S3004 showed a positive Spearman correlation with propionate (ρ = 0.41, P = <0.01) but not acetate in the liquid rumen fraction.
    • Controlling Blown Pack Spoilage Using Anti-Microbial Packaging

      Reid, Rachael; Bolton, Declan; Tiuftin, Andrey; Kerry, Joe P.; Fanning, Seamus; Whyte, Paul (MDPI, 2017-08-12)
      Active (anti-microbial) packaging was prepared using three different formulations; Auranta FV; Inbac-MDA and sodium octanoate at two concentrations (2.5 and 3.5 times their minimum inhibitory concentration (MIC, the lowest concentration that will inhibit the visible growth of the organisms) against Clostridium estertheticum, DSMZ 8809). Inoculated beef samples were packaged using the active packaging and monitored for 100 days storage at 2 °C for blown pack spoilage. The time to the onset of blown pack spoilage was significantly (p < 0.01) increased using Auranta FV and sodium octanoate (caprylic acid sodium salt) at both concentrations. Moreover, sodium octanoate packs had significantly (p < 0.01) delayed blown pack spoilage as compared to Auranta FV. It was therefore concluded that Auranta FV or sodium octanoate, incorporated into the packaging materials used for vacuum packaged beef, would inhibit blown pack spoilage and in the case of the latter, well beyond the 42 days storage period currently required for beef primals
    • Genome Sequence of Staphylococcus saprophyticus DPC5671, a Strain Isolated from Cheddar Cheese

      Bertuzzi, Andrea; Guinane, Caitriona M.; Crispie, Fiona; Kilcawley, Kieran N; McSweeney, Paul L.H.; Rea, Mary C. (American Society for Microbiology, 2017-04-20)
      The draft genome sequence of Staphylococcus saprophyticus DPC5671, isolated from cheddar cheese, was determined. S. saprophyticus is a common Gram-positive bacterium detected on the surface of smear-ripened cheese and other fermented foods.
    • Algal Proteins: Extraction, Application, and Challenges Concerning Production

      Bleakley, Stephen; Hayes, Maria (MDPI, 2017-04-26)
      Population growth combined with increasingly limited resources of arable land and fresh water has resulted in a need for alternative protein sources. Macroalgae (seaweed) and microalgae are examples of under-exploited “crops”. Algae do not compete with traditional food crops for space and resources. This review details the characteristics of commonly consumed algae, as well as their potential for use as a protein source based on their protein quality, amino acid composition, and digestibility. Protein extraction methods applied to algae to date, including enzymatic hydrolysis, physical processes, and chemical extraction and novel methods such as ultrasound-assisted extraction, pulsed electric field, and microwave-assisted extraction are discussed. Moreover, existing protein enrichment methods used in the dairy industry and the potential of these methods to generate high value ingredients from algae, such as bioactive peptides and functional ingredients are discussed. Applications of algae in human nutrition, animal feed, and aquaculture are examined
    • Simulated gastrointestinal digestion of nisin and interaction between nisin and bile

      Gough, Ronan; O'Connor, Paula M.; Rea, Mary C.; Gomez-Sal, Beatriz; Miao, Song; Hill, Colin; Brodkorb, Andre (Elsevier, 2017-08-14)
      Nisin, an antimicrobial peptide showing activity against many Gram positive bacteria, is widely used as a food preservative. The simulated gastrointestinal digestion of nisin (variant A) was studied using the in vitro INFOGEST digestion method. Following oral, gastric and small intestinal digestion, there was no intact nisin in the system and the nisin was primarily digested by pancreatin. After digestion, six nisin fragments (1–11, 1–12, 1–20, 1–21, 1–29 and 1–32) were identified by reversed phase high performance liquid chromatography and mass spectroscopy and four of these nisin fragments (1–20, 1–21, 1–29 and 1–32) demonstrated low antibacterial activity against Lactococcus lactis HP in agar diffusion activity assays. Additionally, it was observed that bile salts form a complex with nisin. This was examined by atomic force microscopy, turbidity and dynamic light scattering, which showed that this interaction resulted in significantly larger bile salt micelles. The presence of bile salts at physiological levels significantly altered the relative amounts of the nisin fragments 1–12, 1–20 and 1–29 produced during an in vitro digestion. This study highlights the importance of including bile in simulated digestions of antimicrobial peptides in order to obtain a more accurate simulation of the in vivo digestion products and their activity.
    • The distribution of runs of homozygosity and selection signatures in six commercial meat sheep breeds

      Purfield, Deirdre C; McParland, Sinead; Wall, Eamon; Berry, Donagh P (PLOS, 2017-05-02)
      Domestication and the subsequent selection of animals for either economic or morphological features can leave a variety of imprints on the genome of a population. Genomic regions subjected to high selective pressures often show reduced genetic diversity and frequent runs of homozygosity (ROH). Therefore, the objective of the present study was to use 42,182 autosomal SNPs to identify genomic regions in 3,191 sheep from six commercial breeds subjected to selection pressure and to quantify the genetic diversity within each breed using ROH. In addition, the historical effective population size of each breed was also estimated and, in conjunction with ROH, was used to elucidate the demographic history of the six breeds. ROH were common in the autosomes of animals in the present study, but the observed breed differences in patterns of ROH length and burden suggested differences in breed effective population size and recent management. ROH provided a sufficient predictor of the pedigree inbreeding coefficient, with an estimated correlation between both measures of 0.62. Genomic regions under putative selection were identified using two complementary algorithms; the fixation index and hapFLK. The identified regions under putative selection included candidate genes associated with skin pigmentation, body size and muscle formation; such characteristics are often sought after in modern-day breeding programs. These regions of selection frequently overlapped with high ROH regions both within and across breeds. Multiple yet uncharacterised genes also resided within putative regions of selection. This further substantiates the need for a more comprehensive annotation of the sheep genome as these uncharacterised genes may contribute to traits of interest in the animal sciences. Despite this, the regions identified as under putative selection in the current study provide an insight into the mechanisms leading to breed differentiation and genetic variation in meat production.
    • Effect of dietary restriction and subsequent re-alimentation on the transcriptional profile of bovine ruminal epithelium

      Keogh, Kate; Waters, Sinead M.; Cormican, Paul; Kelly, Alan K.; O'Shea, Emma; Kenny, David A. (PLOS, 2017-05-17)
      Compensatory growth (CG) is utilised worldwide in beef production systems as a management approach to reduce feed costs. However the underlying biology regulating the expression of CG remains to be fully elucidated. The objective of this study was to examine the effect of dietary restriction and subsequent re-alimentation induced CG on the global gene expression profile of ruminal epithelial papillae. Holstein Friesian bulls (n = 60) were assigned to one of two groups: restricted feed allowance (RES; n = 30) for 125 days (Period 1) followed by ad libitum access to feed for 55 days (Period 2) or (ii) ad libitum access to feed throughout (ADLIB; n = 30). At the end of each period, 15 animals from each treatment were slaughtered and rumen papillae harvested. mRNA was isolated from all papillae samples collected. cDNA libraries were then prepared and sequenced. Resultant reads were subsequently analysed bioinformatically and differentially expressed genes (DEGs) are defined as having a Benjamini-Hochberg P value of <0.05. During re-alimentation in Period 2, RES animals displayed CG, growing at 1.8 times the rate of their ADLIB contemporary animals in Period 2 (P < 0.001). At the end of Period 1, 64 DEGs were identified between RES and ADLIB, with only one DEG identified at the end of Period 2. When analysed within RES treatment (RES, Period 2 v Period 1), 411 DEGs were evident. Genes identified as differentially expressed in response to both dietary restriction and subsequent CG included those involved in processes such as cellular interactions and transport, protein folding and gene expression, as well as immune response. This study provides an insight into the molecular mechanisms underlying the expression of CG in rumen papillae of cattle; however the results suggest that the role of the ruminal epithelium in supporting overall animal CG may have declined by day 55 of re-alimentation.
    • Improving the Yield and Quality of Arable Crops in Organic Production Systems

      Crowley, J.G. (Teagasc, 2005-04-01)
      Ireland's ability to supply organic arable products to meet future market requirements depends on the provision of scientific quantitative information on the production of these crops. The conversion of an 8-ha site at Oak Park is described. The establishment of a single stockless 7-year rotation (wheat, potatoes, oats, legume, spring barley followed by two years’ grass/clover lea) with three replicates is described. The results of the first series of experiments are presented and the possible implications discussed.
    • Phylogenetic and functional potential links pH and N2O emissions in pasture soils

      Samad, Sainur; Biswas, Ambarish; Bakken, Lars R.; Clough, Timothy J.; de Klein, Cecilia A.M.; Richards, Karl G.; Lanigan, Gary J.; Morales, Sergio E. (Nature Publishing Group, 2016-10-26)
      Denitrification is mediated by microbial, and physicochemical, processes leading to nitrogen loss via N2O and N2 emissions. Soil pH regulates the reduction of N2O to N2, however, it can also affect microbial community composition and functional potential. Here we simultaneously test the link between pH, community composition, and the N2O emission ratio (N2O/(NO + N2O + N2)) in 13 temperate pasture soils. Physicochemical analysis, gas kinetics, 16S rRNA amplicon sequencing, metagenomic and quantitative PCR (of denitrifier genes: nirS, nirK, nosZI and nosZII) analysis were carried out to characterize each soil. We found strong evidence linking pH to both N2O emission ratio and community changes. Soil pH was negatively associated with N2O emission ratio, while being positively associated with both community diversity and total denitrification gene (nir & nos) abundance. Abundance of nosZII was positively linked to pH, and negatively linked to N2O emissions. Our results confirm that pH imposes a general selective pressure on the entire community and that this results in changes in emission potential. Our data also support the general model that with increased microbial diversity efficiency increases, demonstrated in this study with lowered N2O emission ratio through more efficient conversion of N2O to N2.
    • Carbon cycling in temperate grassland under elevated temperature

      Jansen-Willems, Anne B.; Lanigan, Gary; Grunhage, Ludger; Muller, Christoph (Wiley, 2016-11-01)
      An increase in mean soil surface temperature has been observed over the last century, and it is predicted to further increase in the future. The effect of increased temperature on ecosystem carbon fluxes in a permanent temperate grassland was studied in a long-term (6 years) field experiment, using multiple temperature increments induced by IR lamps. Ecosystem respiration (R-eco) and net ecosystem exchange (NEE) were measured and modeled by a modified Lloyd and Taylor model including a soil moisture component for R-eco (average R2 of 0.78) and inclusion of a photosynthetic component based on temperature and radiation for NEE (R2 = 0.65). Modeled NEE values ranged between 2.3 and 5.3 kg CO2 m−2 year−1, depending on treatment. An increase of 2 or 3°C led to increased carbon losses, lowering the carbon storage potential by around 4 tonnes of C ha−1 year−1. The majority of significant NEE differences were found during night-time compared to daytime. This suggests that during daytime the increased respiration could be offset by an increase in photosynthetic uptake. This was also supported by differences in δ13C and δ18O, indicating prolonged increased photosynthetic activity associated with the higher temperature treatments. However, this increase in photosynthesis was insufficient to counteract the 24 h increase in respiration, explaining the higher CO2 emissions due to elevated temperature.
    • Novel Graphical Analyses of Runs of Homozygosity among Species and Livestock Breeds

      Iacolina, Laura; Stronen, Astrid V.; Pertoldi, Cino; Tokarska, Małgorzata; Norgaard, Louise S.; Munoz, Joaquin; Kjaersgaard, Anders; Ruiz-Gonzalez, Aritz; Kaminski, Stanislaw; Purfield, Deirdre C (Hindawi, 2016)
      Runs of homozygosity (ROH), uninterrupted stretches of homozygous genotypes resulting from parents transmitting identical haplotypes to their offspring, have emerged as informative genome-wide estimates of autozygosity (inbreeding). We used genomic profiles based on 698 K single nucleotide polymorphisms (SNPs) from nine breeds of domestic cattle (Bos taurus) and the European bison (Bison bonasus) to investigate how ROH distributions can be compared within and among species. We focused on two length classes: 0.5–15 Mb to investigate ancient events and >15 Mb to address recent events (approximately three generations). For each length class, we chose a few chromosomes with a high number of ROH, calculated the percentage of times a SNP appeared in a ROH, and plotted the results. We selected areas with distinct patterns including regions where (1) all groups revealed an increase or decrease of ROH, (2) bison differed from cattle, (3) one cattle breed or groups of breeds differed (e.g., dairy versus meat cattle). Examination of these regions in the cattle genome showed genes potentially important for natural and human-induced selection, concerning, for example, meat and milk quality, metabolism, growth, and immune function. The comparative methodology presented here permits visual identification of regions of interest for selection, breeding programs, and conservation.
    • Isolation and characterisation of κ-casein/whey protein particles from heated milk protein concentrate and role of κ-casein in whey protein aggregation

      Gaspard, Sophie J.; Auty, Mark A.E.; Kelly, Alan L.; O'Mahony, James A.; Brodkorb, Andre (Elsevier, 2017-06-12)
      Milk protein concentrate (79% protein) reconstituted at 13.5% (w/v) protein was heated (90 °C, 25 min, pH 7.2) with or without added calcium chloride. After fractionation of the casein and whey protein aggregates by fast protein liquid chromatography, the heat stability (90 °C, up to 1 h) of the fractions (0.25%, w/v, protein) was assessed. The heat-induced aggregates were composed of whey protein and casein, in whey protein:casein ratios ranging from 1:0.5 to 1:9. The heat stability was positively correlated with the casein concentration in the samples. The samples containing the highest proportion of caseins were the most heat-stable, and close to 100% (w/w) of the aggregates were recovered post-heat treatment in the supernatant of such samples (centrifugation for 30 min at 10,000 × g). κ-Casein appeared to act as a chaperone controlling the aggregation of whey proteins, and this effect was stronger in the presence of αS- and β-casein.
    • A Simple Method for the Purification of Nisin

      Gough, Ronan; Gomez-Sala, Beatriz; O'Connor, Paula M.; Rea, Mary C.; Miao, Song; Hill, Colin; Brodkorb, Andre (Springer, 2017-05-29)
      Nisin, an antimicrobial peptide showing activity against a broad range of Gram-positive bacteria, is widely used as a food preservative and has potential as a therapeutic for a range of infectious diseases. Here, we present a simple purification method, based on a salting-out approach, which can produce a powder containing ∼33% nisin, from a nisin-producing culture in a whey permeate-based medium. This process removes over 99% of the lactic acid, NaCl, lactose and non-nisin proteins from the cell-free culture supernatant. The approach can also enrich a commonly used commercial nisin preparation over 30-fold to a purity of ∼58%. These are higher purities than comparable published methods. The simplicity of this approach facilitates its use in research and also its scale-up.
    • Bacteriocin-Antimicrobial Synergy: A Medical and Food Perspective

      Mathur, Harsh; Field, Des; Rea, Mary C.; Cotter, Paul D.; Hill, Colin; Ross, R.Paul (Frontiers, 2017-06-29)
      The continuing emergence of multi-drug resistant pathogens has sparked an interest in seeking alternative therapeutic options. Antimicrobial combinatorial therapy is one such avenue. A number of studies have been conducted, involving combinations of bacteriocins with other antimicrobials, to circumvent the development of antimicrobial resistance and/or increase antimicrobial potency. Such bacteriocin-antimicrobial combinations could have tremendous value, in terms of reducing the likelihood of resistance development due to the involvement of two distinct mechanisms of antimicrobial action. Furthermore, antimicrobial synergistic interactions may also have potential financial implications in terms of decreasing the costs of treatment by reducing the concentration of an expensive antimicrobial and utilizing it in combination with an inexpensive one. In addition, combinatorial therapies with bacteriocins can broaden antimicrobial spectra and/or result in a reduction in the concentration of an antibiotic required for effective treatments to the extent that potentially toxic or adverse side effects can be reduced or eliminated. Here, we review studies in which bacteriocins were found to be effective in combination with other antimicrobials, with a view to targeting clinical and/or food-borne pathogens. Furthermore, we discuss some of the bottlenecks which are currently hindering the development of bacteriocins as viable therapeutic options, as well as addressing the need to exercise caution when attempting to predict clinical outcomes of bacteriocin-antimicrobial combinations.
    • Whole-Genome Shotgun Sequence of Salmonella bongori, First Isolated in Northwestern Italy

      Romano, Angelo; Bellio, Alberto; Macori, Guerrino; Cotter, Paul D; Manila Bianchi, Daniela; Gallina, Silvia; Decastelli, Lucia (American Society for Microbiology, 2017-07-06)
      This study describes the whole-genome shotgun sequence of Salmonella bongori 48:z35:–, originally isolated from a 1-year-old symptomatic patient in northwest Italy, a typically nonendemic area. The draft genome sequence contained 4.56 Mbp and the G+C content was 51.27%.
    • Draft Genome Sequences of Three Lactobacillus paracasei Strains, Members of the Nonstarter Microbiota of Mature Cheddar Cheese

      Stefanovic, Ewelina; Fitzgerald, Gerald; McAuliffe, Olivia (American Society for Microbiology, 2017-07-20)
      Lactobacillus paracasei strains are common members of the nonstarter microbiota present in various types of cheeses. The draft genome sequences of three strains isolated from mature cheddar cheeses are reported here.
    • Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium

      Henchion, Maeve; Hayes, Maria; Mullen, Anne Maria; Fenelon, Mark; Tiwari, Brijesh; Department of Agriculture, Food and the Marine; 11/F/043 (MDPI, 2017-07-20)
      A growing global population, combined with factors such as changing socio-demographics, will place increased pressure on the world’s resources to provide not only more but also different types of food. Increased demand for animal-based protein in particular is expected to have a negative environmental impact, generating greenhouse gas emissions, requiring more water and more land. Addressing this “perfect storm” will necessitate more sustainable production of existing sources of protein as well as alternative sources for direct human consumption. This paper outlines some potential demand scenarios and provides an overview of selected existing and novel protein sources in terms of their potential to sustainably deliver protein for the future, considering drivers and challenges relating to nutritional, environmental, and technological and market/consumer domains. It concludes that different factors influence the potential of existing and novel sources. Existing protein sources are primarily hindered by their negative environmental impacts with some concerns around health. However, they offer social and economic benefits, and have a high level of consumer acceptance. Furthermore, recent research emphasizes the role of livestock as part of the solution to greenhouse gas emissions, and indicates that animal-based protein has an important role as part of a sustainable diet and as a contributor to food security. Novel proteins require the development of new value chains, and attention to issues such as production costs, food safety, scalability and consumer acceptance. Furthermore, positive environmental impacts cannot be assumed with novel protein sources and care must be taken to ensure that comparisons between novel and existing protein sources are valid. Greater alignment of political forces, and the involvement of wider stakeholders in a governance role, as well as development/commercialization role, is required to address both sources of protein and ensure food security.
    • The Fungal Frontier: A Comparative Analysis of Methods Used in the Study of the Human Gut Mycobiome

      Huseyin, Chloe E.; Cabrera Rubio, Raul; O'Sullivan, Orla; Cotter, Paul D; Scanlan, Pauline D. (Frontiers, 2017-07-31)
      The human gut is host to a diverse range of fungal species, collectively referred to as the gut “mycobiome”. The gut mycobiome is emerging as an area of considerable research interest due to the potential roles of these fungi in human health and disease. However, there is no consensus as to what the best or most suitable methodologies available are with respect to characterizing the human gut mycobiome. The aim of this study is to provide a comparative analysis of several previously published mycobiome-specific culture-dependent and -independent methodologies, including choice of culture media, incubation conditions (aerobic versus anaerobic), DNA extraction method, primer set and freezing of fecal samples to assess their relative merits and suitability for gut mycobiome analysis. There was no significant effect of media type or aeration on culture-dependent results. However, freezing was found to have a significant effect on fungal viability, with significantly lower fungal numbers recovered from frozen samples. DNA extraction method had a significant effect on DNA yield and quality. However, freezing and extraction method did not have any impact on either α or β diversity. There was also considerable variation in the ability of different fungal-specific primer sets to generate PCR products for subsequent sequence analysis. Through this investigation two DNA extraction methods and one primer set was identified which facilitated the analysis of the mycobiome for all samples in this study. Ultimately, a diverse range of fungal species were recovered using both approaches, with Candida and Saccharomyces identified as the most common fungal species recovered using culture-dependent and culture-independent methods, respectively. As has been apparent from ecological surveys of the bacterial fraction of the gut microbiota, the use of different methodologies can also impact on our understanding of gut mycobiome composition and therefore requires careful consideration. Future research into the gut mycobiome needs to adopt a common strategy to minimize potentially confounding effects of methodological choice and to facilitate comparative analysis of datasets.
    • Synergistic Nisin-Polymyxin Combinations for the Control of Pseudomonas Biofilm Formation

      Field, Des; Seisling, Nynke; Cotter, Paul D.; Ross, R. Paul; Hill, Colin (Frontiers, 2016-10-26)
      The emergence and dissemination of multi-drug resistant pathogens is a global concern. Moreover, even greater levels of resistance are conferred on bacteria when in the form of biofilms (i.e., complex, sessile communities of bacteria embedded in an organic polymer matrix). For decades, antimicrobial peptides have been hailed as a potential solution to the paucity of novel antibiotics, either as natural inhibitors that can be used alone or in formulations with synergistically acting antibiotics. Here, we evaluate the potential of the antimicrobial peptide nisin to increase the efficacy of the antibiotics polymyxin and colistin, with a particular focus on their application to prevent biofilm formation of Pseudomonas aeruginosa. The results reveal that the concentrations of polymyxins that are required to effectively inhibit biofilm formation can be dramatically reduced when combined with nisin, thereby enhancing efficacy, and ultimately, restoring sensitivity. Such combination therapy may yield added benefits by virtue of reducing polymyxin toxicity through the administration of significantly lower levels of polymyxin antibiotics.
    • Stress and immunological response of heifers divergently ranked for residual feed intake following an adrenocorticotropic hormone challenge

      Kelly, A. K; Lawrence, P.; Earley, Bernadette; Kenny, David A.; McGee, Mark (Biomed Central, 2017-08-08)
      Background When an animal is exposed to a stressor, metabolic rate, energy consumption and utilisation increase primarily through activation of the hypothalamic-pituitary-adrenal (HPA) axis. Changes to partitioning of energy by an animal are likely to influence the efficiency with which it is utilised. Therefore, this study aimed to determine the physiological stress response to an exogenous adrenocorticotropic hormone (ACTH) challenge in beef heifers divergently ranked on phenotypic residual feed intake (RFI). Results Data were collected on 34 Simmental weaning beef heifers the progeny of a well characterized and divergently bred RFI suckler beef herd. Residual feed intake was determined on each animal during the post-weaning stage over a 91-day feed intake measurement period during which they were individually offered adlibitum grass silage and 2 kg of concentrate per head once daily. The 12 highest [0.34 kg DM/d] and 12 lowest [−0.48 kg DM/d] ranking animals on RFI were selected for use in this study. For the physiological stress challenge heifers (mean age 605 ± 13 d; mean BW 518 ± 31.4 kg) were fitted aseptically with indwelling jugular catheters to facilitate intensive blood collection. The response of the adrenal cortex to a standardised dose of ACTH (1.98 IU/kg metabolic BW0.75) was examined. Serial blood samples were analysed for plasma cortisol, ACTH and haematology variables. Heifers differing in RFI did not differ (P = 0.59) in ACTH concentrations. Concentration of ACTH peaked (P < 0.001) in both RFI groups at 20 min post-ACTH administration, following which concentration declined to baseline levels by 150 min. Similarly, cortisol systemic profile peaked at 60 min and concentrations remained continuously elevated for 150 min. A RFI × time interaction was detected for cortisol concentrations (P = 0.06) with high RFI heifers had a greater cortisol response than Low RFI from 40 min to 150 min relative to ACTH administration. Cortisol response was positively associated with RFI status (r = 0.32; P < 0.01). No effect of RFI was evident for neutrophil, lymphocytes, monocyte, eosinophils and basophil count. Plasma red blood cell number (6.07 vs. 6.23; P = 0.02) and hematocrit percentage (23.2 vs. 24.5; P = 0.02) were greater for low than high RFI animals. Conclusions Evidence is provided that feed efficiency is associated with HPA axis function and susceptibility to stress, and responsiveness of the HPA axis is likely to contribute to appreciable variation in the efficiency feed utilisation of cattle.